Neural Network Toolbox ${ }^{\text {w }}$

Reference

Mark Hudson Beale
Martin T. Hagan
Howard B. Demuth

MATLAB ${ }^{\circ}$

How to Contact MathWorks

Latest news:
www.mathworks.com
Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
Neural Network Toolbox ${ }^{\text {mm }}$ Reference
© COPYRIGHT 1992-2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

June $1992 \quad$ First printing
April 1993 Second printing
January 1997 Third printing
July 1997 Fourth printing
January $1998 \quad$ Fifth printing
September 2000
June 2001
July 2002
Sixth printing
Seventh printing
Online only
January 2003
June 2004
October 2004
Online only Online only Online only
October $2004 \quad$ Eighth printing
March 2005 Online only
March 2006
September 2006
March 2007
September 2007
Online only
Ninth printing
Online only
Online only
March 2008 Online only
October 2008 Online only
March 2009 Online only
September 2009 Online only
March $2010 \quad$ Online only
September 2010 Online only
April $2011 \quad$ Online only
September 2011 Online only
March 2012 Online only
September 2012 Online only
March $2013 \quad$ Online only
September 2013 Online only
March $2014 \quad$ Online only
October $2014 \quad$ Online only
March $2015 \quad$ Online only
September 2015 Online only
March $2016 \quad$ Online only
September 2016 Online only
March $2017 \quad$ Online only
September 2017 Online only

Revised for Version 3 (Release 11)
Revised for Version 4 (Release 12)
Minor revisions (Release 12.1)
Minor revisions (Release 13)
Minor revisions (Release 13SP1)
Revised for Version 4.0.3 (Release 14)
Revised for Version 4.0.4 (Release 14SP1)
Revised for Version 4.0.4
Revised for Version 4.0.5 (Release 14SP2)
Revised for Version 5.0 (Release 2006a)
Minor revisions (Release 2006b)
Minor revisions (Release 2007a)
Revised for Version 5.1 (Release 2007b)
Revised for Version 6.0 (Release 2008a)
Revised for Version 6.0.1 (Release 2008b)
Revised for Version 6.0.2 (Release 2009a)
Revised for Version 6.0.3 (Release 2009b)
Revised for Version 6.0.4 (Release 2010a)
Revised for Version 7.0 (Release 2010b)
Revised for Version 7.0.1 (Release 2011a)
Revised for Version 7.0.2 (Release 2011b)
Revised for Version 7.0.3 (Release 2012a)
Revised for Version 8.0 (Release 2012b)
Revised for Version 8.0.1 (Release 2013a)
Revised for Version 8.1 (Release 2013b)
Revised for Version 8.2 (Release 2014a)
Revised for Version 8.2.1 (Release 2014b)
Revised for Version 8.3 (Release 2015a)
Revised for Version 8.4 (Release 2015b)
Revised for Version 9.0 (Release 2016a)
Revised for Version 9.1 (Release 2016b)
Revised for Version 10.0 (Release 2017a)
Revised for Version 11.0 (Release 2017b)

Functions - Alphabetical List
1

Functions - Alphabetical List

adapt

Adapt neural network to data as it is simulated

Syntax

```
[net,Y,E,Pf,Af,tr] = adapt(net,P,T,Pi,Ai)
```


To Get Help

Type help network/adapt.

Description

This function calculates network outputs and errors after each presentation of an input.
[net, Y, E, Pf, Af, tr] $=$ adapt (net, P, T, Pi, Ai) takes

net	Network
P	Network inputs
T	Network targets (default = zeros)
Pi	Initial input delay conditions (default = zeros)
Ai	Initial layer delay conditions (default = zeros)

and returns the following after applying the adapt function net.adaptFen with the adaption parameters net.adaptParam:

net	Updated network
Y	Network outputs
E	Network errors
Pf	Final input delay conditions
Af	Final layer delay conditions

tr	Training record (epoch and perf)

Note that T is optional and is only needed for networks that require targets. Pi and Pf are also optional and only need to be used for networks that have input or layer delays.
adapt's signal arguments can have two formats: cell array or matrix.
The cell array format is easiest to describe. It is most convenient for networks with multiple inputs and outputs, and allows sequences of inputs to be presented,

P	Ni-by-TS cell array	Each element P \{i,ts $\}$ is an Ri-by-Q matrix.
T	Nt-by-TS cell array	Each element T\{i,ts\} is a Vi-by-Q matrix.
Pi	Ni-by-ID cell array	Each element Pi\{i,k\} is an Ri-by-Q matrix.
Ai	N1-by-LD cell array	Each element Ai $\{i, k\}$ is an Si-by-Q matrix.
Y	No-by-TS cell array	Each element $Y\{i, t s\}$ is a Ui-by-Q matrix.
E	No-by-TS cell array	Each element E\{i,ts $\}$ is a Ui-by-Q matrix.
Pf	Ni-by-ID cell array	Each element Pf $\{i, k\}$ is an Ri-by-Q matrix.
Af	N1-by-LD cell array	Each element Af $\{i, k\}$ is an Si-by-Q matrix.

where

Ni	$=$	net. numInputs
N1	$=$	net. numLayers
No	$=$	net. numOutputs
ID	$=$	net. numInputDelays
LD	$=$	net. numLayerDelays
TS	$=$	Number of time steps
Q	$=$	Batch size

Ri	$=$	net.inputs\{i\}.size
Si	$=$	net.layers\{i\}.size
Ui	$=$	net.outputs\{i\}.size

The columns of Pi, Pf, Ai, and Af are ordered from oldest delay condition to most recent:

$\operatorname{Pi}\{i, k\}$	$=$	Input i at time $t s=k-I D$
$\operatorname{Pf}\{i, k\}$	$=$	Input i at time $t s=T S+k-I D$
Ai $\{i, k\}$	$=$	Layer output i at time $t s=k-L D$
$A f\{i, k\}$	$=$	Layer output i at time $t s=T S+k-L D$

The matrix format can be used if only one time step is to be simulated ($T S=1$). It is convenient for networks with only one input and output, but can be used with networks that have more.

Each matrix argument is found by storing the elements of the corresponding cell array argument in a single matrix:

P	(sum of Ri)-by-Q matrix
T	(sum of Vi)-by-Q matrix
Pi	(sum of Ri)-by-(ID*Q) matrix
Ai	(sum of Si)-by-(LD*Q) matrix
Y	(sum of Ui)-by-Q matrix
E	(sum of Ui)-by-Q matrix
Pf	(sum of Ri)-by-(ID*Q) matrix
Af	(sum of Si)-by-(LD*Q) matrix

Examples

Here two sequences of 12 steps (where T1 is known to depend on P1) are used to define the operation of a filter.

```
p1 = {-1 0 1 0 1 1 1 -1 0 0 -1 1 0 1 1};
t1 = {-1 -1 1 1 1 1 2 0 0 -1 -1 0 1 1};
```

Here linearlayer is used to create a layer with an input range of [-1 1], one neuron, input delays of 0 and 1 , and a learning rate of 0.1 . The linear layer is then simulated.

```
net = linearlayer([0 1],0.1);
```

Here the network adapts for one pass through the sequence.
The network's mean squared error is displayed. (Because this is the first call to adapt, the default Pi is used.)

```
[net,y,e,pf] = adapt(net,p1,t1);
mse(e)
```

Note that the errors are quite large. Here the network adapts to another 12 time steps (using the previous Pf as the new initial delay conditions).

```
p2 = {11 -1 -1 1 1 1 1 -1 0 0 0 0 1 1 -1 -1};;
t2 = {2 0 0 -2 0 2 0 -1 0 0 1 0 -1};
[net,y,e,pf] = adapt(net,p2,t2,pf);
mse(e)
```

Here the network adapts for 100 passes through the entire sequence.

```
p3 = [p1 p2];
t3 = [t1 t2];
for i = 1:100
    [net,y,e] = adapt(net,p3,t3);
end
mse (e)
```

The error after 100 passes through the sequence is very small. The network has adapted to the relationship between the input and target signals.

Algorithms

adapt calls the function indicated by net. adaptFen, using the adaption parameter values indicated by net. adaptParam.

Given an input sequence with TS steps, the network is updated as follows: Each step in the sequence of inputs is presented to the network one at a time. The network's weight and bias values are updated after each step, before the next step in the sequence is presented. Thus the network is updated TS times.

See Also
init | revert | sim | train
Introduced before R2006a

adaptwb

Adapt network with weight and bias learning rules

Syntax

```
[net,ar,Ac] = adapt(net,Pd,T,Ai)
```


Description

This function is normally not called directly, but instead called indirectly through the function adapt after setting a network's adaption function (net.adaptFen) to this function.
[net, ar, Ac] = adapt (net, Pd, T, Ai) takes these arguments,

net	Neural network
Pd	Delayed processed input states and inputs
T	Targets
Ai	Initial layer delay states

and returns

net	Neural network after adaption
ar	Adaption record
Ac	Combined initial layer states and layer outputs

Examples

Linear layers use this adaption function. Here a linear layer with input delays of 0 and 1 , and a learning rate of 0.5 , is created and adapted to produce some target data t when given some input data x . The response is then plotted, showing the network's error going down over time.

```
x = {-1 0 0 1 0 1 1 1 -1 0}00-1 1 0 1};
t = {{-1 -1 1 1 1 1 1 2 2 0 0 -1 -1 0
net = linearlayer([0 1],0.5);
net.adaptFcn
[net,y,e,xf] = adapt(net,x,t);
plotresponse(t,y)
```


See Also
 adapt

Introduced in R2010b

adddelay

Add delay to neural network response

Syntax

```
net = adddelay(net,n)
```


Description

net = adddelay(net,n) takes these arguments,

net	Neural network
n	Number of delays

and returns the network with input delay connections increased, and output feedback delays decreased, by the specified number of delays n. The result is a network that behaves identically, except that outputs are produced n timesteps later.

If the number of delays n is not specified, a default of one delay is used.

Examples

Time Delay Network

This example creates, trains, and simulates a time delay network in its original form, on an input time series X and target series T. Then the delay is removed and later added back. The first and third outputs will be identical, while the second result will include a new prediction for the following step.

```
[X,T] = simpleseries_dataset;
net1 = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net1,X,T);
net1 = train(net1,Xs,Ts,Xi);
y1 = net1(Xs,Xi);
view(net1)
```


net3 = adddelay(net2);
[Xs,Xi,Ai,Ts] = preparets(net3,X,T);
y3 = net3(Xs,Xi);
view (net3)

See Also
closeloop | openloop | removedelay
Introduced in R2010b

boxdist

Distance between two position vectors

Syntax

```
d = boxdist(pos)
```


Description

boxdist is a layer distance function that is used to find the distances between the layer's neurons, given their positions.
$d=$ boxdist(pos) takes one argument,

pos	N-by-S matrix of neuron positions

and returns the S-by-S matrix of distances.
boxdist is most commonly used with layers whose topology function is gridtop.

Examples

Here you define a random matrix of positions for 10 neurons arranged in threedimensional space and then find their distances.

```
pos = rand (3,10);
d = boxdist(pos)
```


Network Use

To change a network so that a layer's topology uses boxdist, set net.layers\{i\}.distanceFcn to 'boxdist'.

In either case, call sim to simulate the network with boxdist.

Algorithms

The box distance D between two position vectors Pi and Pj from a set of S vectors is Dij $=\max (a b s(P i-P j))$

See Also

dist | linkdist| mandist|sim

Introduced before R2006a

bttderiv

Backpropagation through time derivative function

Syntax

```
bttderiv('dperf dwb',net,X,T,Xi,Ai,EW)
```

bttderiv('de_dwb', net, X,T,Xi,Ai, EW)

Description

This function calculates derivatives using the chain rule from a network's performance back through the network, and in the case of dynamic networks, back through time.
bttderiv('dperf_dwb', net,X,T,Xi,Ai,EW) takes these arguments,

net	Neural network
X	Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T	Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
$X i$	Initial input delay states (optional)
Ai	Initial layer delay states (optional)
EW	Error weights (optional)

and returns the gradient of performance with respect to the network's weights and biases, where R and S are the number of input and output elements and Q is the number of samples (and N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).
bttderiv('de_dwb', net, X, T, Xi, Ai, EW) returns the Jacobian of errors with respect to the network's weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```
[x,t] = simplefit dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = bttderiv('dperf_dwb',net,x,t)
jwb = bttderiv('de_dwb',net,x,t)
```


See Also

defaultderiv | fpderiv | num2deriv | num5deriv | staticderiv

Introduced in R2010b

cascadeforwardnet

Cascade-forward neural network

Syntax

cascadeforwardnet(hiddenSizes,trainFcn)

Description

Cascade-forward networks are similar to feed-forward networks, but include a connection from the input and every previous layer to following layers.

As with feed-forward networks, a two-or more layer cascade-network can learn any finite input-output relationship arbitrarily well given enough hidden neurons.
cascadeforwardnet (hiddenSizes,trainFcn) takes these arguments,

hiddenSizes	Row vector of one or more hidden layer sizes (default = 10)
trainFcn	Training function (default = 'trainlm')

and returns a new cascade-forward neural network.

Examples

Create and Train a Cascade Network

Here a cascade network is created and trained on a simple fitting problem.

```
[x,t] = simplefit_dataset;
net = cascadeforwardnet(10);
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)
```

$1.9372 \mathrm{e}-05$

See Also

feedforwardnet | network

Topics

"Create, Configure, and Initialize Multilayer Neural Networks"
"Neural Network Object Properties"
"Neural Network Subobject Properties"

Introduced in R2010b

catelements

Concatenate neural network data elements

Syntax

```
catelements(x1,x2,...,xn)
[x1; x2; ... xn]
```


Description

catelements ($\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn}$) takes any number of neural network data values, and merges them along the element dimension (i.e., the matrix row dimension).

If all arguments are matrices, this operation is the same as [x1; $x 2 ; \ldots x n]$.
If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and then the matrices in the same positions in each argument are concatenated.

Examples

This code concatenates the elements of two matrix data values.

```
x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6; 2 9 1]
y = catelements(x1,x2)
```

This code concatenates the elements of two cell array data values.

```
x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 ={[2 1 3] [4 5 6]; [2 5 4] [9 7 5]}
y = catelements(x1,x2)
```


See Also
 catsamples | catsignals | cattimesteps | getelements | nndata| numelements | setelements

Introduced in R2010b

catsamples

Concatenate neural network data samples

Syntax

```
catsamples(x1,x2,...,xn)
[x1 x2 ... xn]
catsamples(x1,x2,...,xn,'pad',v)
```


Description

catsamples (x1, x2, .., xn) takes any number of neural network data values, and merges them along the samples dimension (i.e., the matrix column dimension).

If all arguments are matrices, this operation is the same as [x1 x2 ... xn].
If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and then the matrices in the same positions in each argument are concatenated.
catsamples (x1, x2, ..., xn, 'pad',v) allows samples with varying numbers of timesteps (columns of cell arrays) to be concatenated by padding the shorter time series with the value v , until they are the same length as the longest series. If v is not specified, then the value NaN is used, which is often used to represent unknown or don't-care inputs or targets.

Examples

This code concatenates the samples of two matrix data values.

```
x1 = [1 2 3; 4 7 4]
x2 =[[5 8 2; 4 7 6]
y = catsamples(x1,x2)
```

This code concatenates the samples of two cell array data values.

```
x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = catsamples(x1,x2)
```

Here the samples of two cell array data values, with unequal numbers of timesteps, are concatenated.

```
x1 = {1 2 3 4 5};
x2 = {10 11 12};
y = catsamples(x1,x2,'pad')
```


See Also

catelements | catsignals | cattimesteps | getsamples | nndata | numsamples | setsamples

Introduced in R2010b

catsignals

Concatenate neural network data signals

Syntax

```
catsignals(x1,x2,...,xn)
{x1; x2; ...; xn}
```


Description

catsignals ($\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn}$) takes any number of neural network data values, and merges them along the element dimension (i.e., the cell row dimension).

If all arguments are matrices, this operation is the same as $\{x 1 ; x 2 ; \ldots ; x n\}$.
If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and the cell arrays are concatenated as [x1; x2; ...; xn].

Examples

This code concatenates the signals of two matrix data values.

```
x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = catsignals(x1,x2)
```

This code concatenates the signals of two cell array data values.

```
x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = catsignals(x1,x2)
```


See Also
 catelements | catsamples | cattimesteps | getsignals | nndata| numsignals | setsignals

Introduced in R2010b

cattimesteps

Concatenate neural network data timesteps

```
Syntax
cattimesteps(x1,x2,...,xn)
{x1 x2 ... xn}
```


Description

cattimesteps ($\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn}$) takes any number of neural network data values, and merges them along the element dimension (i.e., the cell column dimension).

If all arguments are matrices, this operation is the same as $\{x 1 \times 2 \ldots x n\}$.
If any argument is a cell array, all non-cell array arguments are enclosed in cell arrays, and the cell arrays are concatenated as [x1 $\mathrm{x} 2 \ldots \mathrm{xn}$].

Examples

This code concatenates the elements of two matrix data values.

```
x1 = [ll 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = cattimesteps(x1,x2)
```

This code concatenates the elements of two cell array data values.

```
x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [[9 7 5]}
y = cattimesteps(x1,x2)
```


See Also
 catelements | catsamples | catsignals | gettimesteps | nndata| numtimesteps | settimesteps

Introduced in R2010b

cellmat

Create cell array of matrices

Syntax

cellmat (A, B, C, D, v)

Description

cellmat (A, B, C, D, v) takes four integer values and one scalar value v , and returns an A-by-B cell array of C-by-D matrices of value v. If the value v is not specified, zero is used.

Examples

Here two cell arrays of matrices are created.

```
cm1 = cellmat (2,3,5,4)
cm2 = cellmat(3,4,2,2,pi)
```


See Also

nndata

Introduced in R2010b

closeloop

Convert neural network open-loop feedback to closed loop

Syntax

```
net = closeloop(net)
[net,xi,ai] = closeloop(net,xi,ai)
```


Description

net $=$ closeloop (net) takes a neural network and closes any open-loop feedback. For each feedback output i whose property net. outputs\{i\}.feedbackMode is 'open', it replaces its associated feedback input and their input weights with layer weight connections coming from the output. The net.outputs \{i\}.feedbackMode property is set to 'closed', and the net.outputs\{i\}.feedbackInput property is set to an empty matrix. Finally, the value of net. outputs \{i\}.feedbackDelays is added to the delays of the feedback layer weights (i.e., to the delays values of the replaced input weights).
[net,xi,ai] = closeloop(net,xi,ai) converts an open-loop network and its current input delay states xi and layer delay states ai to closed-loop form.

Examples

Convert NARX Network to Closed-Loop Form

This example shows how to design a NARX network in open-loop form, then convert it to closed-loop form.

```
[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
```

```
Yopen = net(Xs,Xi,Ai)
net = closeloop(net)
view (net)
[Xs,Xi,Ai,Ts] = preparets(net,X, {},T);
Ycloesed = net(Xs,Xi,Ai);
```


Convert Delay States

For examples on using closeloop and openloop to implement multistep prediction, see narxnet and narnet.

See Also

narnet | narxnet | noloop | openloop

Introduced in R2010b

combvec

Create all combinations of vectors

Syntax

```
combvec(A1,A2, ...)
```


Description

combvec (A1, A2, ...) takes any number of inputs,

A1	Matrix of N1 (column) vectors
A2	Matrix of N2 (column) vectors

and returns a matrix of ($\mathrm{N} 1 * \mathrm{~N} 2$ * . .) column vectors, where the columns consist of all possibilities of A2 vectors, appended to A1 vectors.

Examples

```
a1 = [1 2 3; 4 5 6];
a2 = [7 8; 9 10];
a3 = combvec(a1,a2)
a3 =
\begin{tabular}{rrrrrr}
1 & 2 & 3 & 1 & 2 & 3 \\
4 & 5 & 6 & 4 & 5 & 6 \\
7 & 7 & 7 & 8 & 8 & 8 \\
9 & 9 & 9 & 10 & 10 & 10
\end{tabular}
```

Introduced before R2006a

compet

Competitive transfer function

Graph and Symbol

 Output a

 $a=$ compet (n)
 Compet Transfer Function

Syntax

```
A = compet(N,FP)
info = compet('code')
```


Description

compet is a neural transfer function. Transfer functions calculate a layer's output from its net input.
$A=\operatorname{compet}(N, F P)$ takes N and optional function parameters,

N	S-by-2 matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns the $S-b y-Q$ matrix A with a 1 in each column where the same column of N has its maximum value, and 0 elsewhere.
info $=$ compet ('code') returns information according to the code string specified:
compet ('name') returns the name of this function.
compet('output',FP) returns the [min max] output range.
compet('active',FP) returns the [min max] active input range.
compet('fullderiv') returns 1 or 0 , depending on whether $d A _d N$ is S-by-S-by-Q or S -by-Q.
compet('fpnames') returns the names of the function parameters.
compet('fpdefaults') returns the default function parameters.

Examples

Here you define a net input vector N, calculate the output, and plot both with bar graphs.

```
n = [0; 1; -0.5; 0.5];
a = compet(n);
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'compet';
```


See Also

sim | softmax

Introduced before R2006a

competlayer

Competitive layer

Syntax

competlayer(numClasses, kohonenLR, conscienceLR)

Description

Competitive layers learn to classify input vectors into a given number of classes, according to similarity between vectors, with a preference for equal numbers of vectors per class.
competlayer (numClasses, kohonenLR, conscienceLR) takes these arguments,

numClasses	Number of classes to classify inputs (default $=5$)
kohonenLR	Learning rate for Kohonen weights (default $=0.01$)
conscienceLR	Learning rate for conscience bias (default $=0.001$)

and returns a competitive layer with numClasses neurons.

Examples

Create and Train a Competitive Layer

Here a competitive layer is trained to classify 150 iris flowers into 6 classes.

```
inputs = iris_dataset;
net = competlayer(6);
net = train(net,inputs);
view(net)
outputs = net(inputs);
classes = vec2ind(outputs);
```


See Also

lvqnet | patternnet | selforgmap

Introduced in R2010b

con2seq

Convert concurrent vectors to sequential vectors

Syntax

```
S = con2seq(b)
S = con2seq(b,TS)
```


Description

Neural Network Toolbox software arranges concurrent vectors with a matrix, and sequential vectors with a cell array (where the second index is the time step).
con2seq and seq2con allow concurrent vectors to be converted to sequential vectors, and back again.
$S=c o n 2 s e q(b)$ takes one input,

```
b R-by-TS matrix
```

and returns one output,

S	1-by-TS cell array of R-by-1 vectors

$S=c o n 2 s e q(b, T S)$ can also convert multiple batches,

b	N-by-1 cell array of matrices with M^{*} TS columns
TS	Time steps

and returns

S	N-by-TS cell array of matrices with M columns

Examples

Here a batch of three values is converted to a sequence.

```
p1 = [1 4 2 2]
p2 = con2seq(p1)
```

Here, two batches of vectors are converted to two sequences with two time steps.

```
p1 = {[1 3 4 5; 1 1 7 4]; [7 3 4 4; 6 9 4 1]}
p2 = con2seq(p1,2)
```


See Also

concur \| seq2con

Introduced before R2006a

concur

Create concurrent bias vectors

Syntax

```
concur(B,Q)
```


Description

concur (B, Q)

B	S-by-1 bias vector (or an N1-by-1 cell array of vectors)
Q	Concurrent size

and returns an S-by-B matrix of copies of B (or an N1-by-1 cell array of matrices).

Examples

Here concur creates three copies of a bias vector.

```
b = [1; 3; 2; -1];
```

concur (b, 3)

Network Use

To calculate a layer's net input, the layer's weighted inputs must be combined with its biases. The following expression calculates the net input for a layer with the netsum net input function, two input weights, and a bias:
$\mathrm{n}=\operatorname{netsum}(\mathrm{z} 1, \mathrm{z} 2, \mathrm{~b})$
The above expression works if $\mathrm{Z1}, \mathrm{z} 2$, and B are all S -by- 1 vectors. However, if the network is being simulated by sim (or adapt or train) in response to Q concurrent
vectors, then Z 1 and z 2 will be S-by-Q matrices. Before B can be combined with $\mathrm{Z1}$ and $Z 2$, you must make Q copies of it.
$\mathrm{n}=\operatorname{netsum}(\mathrm{z} 1, \mathrm{z} 2, \operatorname{concur}(\mathrm{~b}, \mathrm{q}))$

See Also

con2seq|netprod|netsum| seq2con | sim

Introduced before R2006a

configure

Configure network inputs and outputs to best match input and target data

```
Syntax
net = configure(net,x,t)
net = configure(net,x)
net = configure(net,'inputs',x,i)
net = configure(net,'outputs',t,i)
```


Description

Configuration is the process of setting network input and output sizes and ranges, input preprocessing settings and output postprocessing settings, and weight initialization settings to match input and target data.

Configuration must happen before a network's weights and biases can be initialized. Unconfigured networks are automatically configured and initialized the first time train is called. Alternately, a network can be configured manually either by calling this function or by setting a network's input and output sizes, ranges, processing settings, and initialization settings properties manually.
net $=$ configure (net, x, t) takes input data x and target data t, and configures the network's inputs and outputs to match.
net $=$ configure (net, x) configures only inputs.
net $=$ configure (net,'inputs',x,i) configures the inputs specified with the index vector i. If i is not specified all inputs are configured.
net $=$ configure (net, 'outputs', $t, i)$ configures the outputs specified with the index vector i. If i is not specified all targets are configured.

Examples

Here a feedforward network is created and manually configured for a simple fitting problem (as opposed to allowing train to configure it).

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20); view(net)
net = configure(net,x,t); view(net)
```


See Also

init | isconfigured | train | unconfigure

Introduced in R2010b

confusion

Classification confusion matrix

Syntax

[c,cm,ind,per] = confusion(targets,outputs)

Description

$[\mathrm{c}, \mathrm{cm}$, ind, per $]$	$=$ confusion(targets, outputs) takes these values:
targets	S-by-Q matrix, where each column vector contains a single 1 value, with all other elements 0. The index of the 1 indicates which of S categories that vector represents.
outputs	S-by-Q matrix, where each column contains values in the range $[0,1]$. The index of the largest element in the column indicates which of S categories that vector represents.

and returns these values:

c	Confusion value $=$ fraction of samples misclassified
cm	S-by-S confusion matrix, where $\mathrm{cm}(i, j)$ is the number of samples whose target is the ith class that was classified as j
ind	S-by-S cell array, where ind $\{i, j\}$ contains the indices of samples with the ith target class, but j th output class
per	S-by-4 matrix, where each row summarizes four percentages associated with the ith class: ```per(i,1) false negative rate = (false negatives)/(all output negatives) per(i,2) false positive rate = (false positives)/(all output positives) per(i,3) true positive rate = (true positives)/(all output positives) per(i,4) true negative rate = (true negatives)/(all output negatives)```

[c,cm,ind,per] = confusion(TARGETS, OUTPUTS) takes these values:

targets	1 -by- Q vector of $1 / 0$ values representing membership
outputs	S-by- Q matrix, of value in $[0,1]$ interval, where values greater than or equal to 0.5 indicate class membership

and returns these values:

c	Confusion value $=$ fraction of samples misclassified
cm	2-by-2 confusion matrix
ind	2-by-2 cell array, where ind $\{i, j\}$ contains the indices of samples whose target is 1 versus 0, and whose output was greater than or equal to 0.5 versus less than 0.5
per	2-by-4 matrix where each ith row represents the percentage of false negatives, false positives, true positives, and true negatives for the class and out-of-class

Examples

```
[x,t] = simpleclass_dataset;
net = patternnet(10);
net = train(net,x,t);
y = net(x);
[c,cm,ind,per] = confusion(t,y)
```


See Also

plotconfusion | roc
Introduced in R2008a

convwf

Convolution weight function

Syntax

```
Z = convwf(W,P)
dim = convwf('size',S,R,FP)
dw = convwf('dw',W,P,Z,FP)
info = convwf('code')
```


Description

Weight functions apply weights to an input to get weighted inputs.
$Z=\operatorname{convwf}(W, P)$ returns the convolution of a weight matrix W and an input P.
dim = convwf('size',S,R,FP) takes the layer dimension S, input dimension R, and function parameters, and returns the weight size.
$d w=$ convwf ('dw', $W, P, Z, F P)$ returns the derivative of Z with respect to W .
info = convwf('code') returns information about this function. The following codes are defined:

'deriv'	Name of derivative function
'fullderiv'	Reduced derivative $=2$, full derivative = 1, linear derivative $=0$
'pfullderiv'	Input: reduced derivative = 2, full derivative = 1, linear derivative = 0
'wfullderiv'	Weight: reduced derivative = 2, full derivative = 1, linear derivative = 0
'name'	Full name
'fpnames'	Returns names of function parameters

```
'fpdefaults' Returns default function parameters
```


Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input Z.

```
W = rand (4,1);
P}=\operatorname{rand}(8,1)
Z = convwf (W,P)
```


Network Use

To change a network so an input weight uses convwf, set net.inputWeights\{i,j\}.weightFcn to 'convwf'. For a layer weight, set net.layerWeights\{i,j\}.weightFcn to 'convwf'.

In either case, call sim to simulate the network with convwf.

Introduced in R2006a

crossentropy

Neural network performance

Syntax

```
perf = crossentropy(net,targets,outputs,perfWeights)
perf = crossentropy(
```

\qquad

``` , Name, Value)
```


Description

perf = crossentropy(net,targets,outputs,perfWeights) calculates a network performance given targets and outputs, with optional performance weights and other parameters. The function returns a result that heavily penalizes outputs that are extremely inaccurate (y near $1-t$), with very little penalty for fairly correct classifications (y near t). Minimizing cross-entropy leads to good classifiers.

The cross-entropy for each pair of output-target elements is calculated as: ce $=-\mathrm{t}$. * $\log (y)$.

The aggregate cross-entropy performance is the mean of the individual values: perf = sum(ce(:))/numel (ce).

Special case ($\mathrm{N}=1$): If an output consists of only one element, then the outputs and targets are interpreted as binary encoding. That is, there are two classes with targets of 0 and 1 , whereas in 1 -of-N encoding, there are two or more classes. The binary crossentropy expression is: ce = -t .* $\log (\mathrm{y})-(1-\mathrm{t}) . * \log (1-\mathrm{y})$.
perf = crossentropy (__, Name, Value) supports customization according to the specified name-value pair arguments.

Examples

Calculate Network Performance

This example shows how to design a classification network with cross-entropy and 0.1 regularization, then calculation performance on the whole dataset.

```
[x,t] = iris_dataset;
net = patternnet(10);
net.performParam.regularization = 0.1;
net = train(net,x,t);
y = net(x);
perf = crossentropy(net,t,y,{1},'regularization',0.1)
perf = 0.0267
```


Set crossentropy as Performance Function

This example shows how to set up the network to use the crossentropy during training.

```
net = feedforwardnet(10);
net.performFcn = 'crossentropy';
net.performParam.regularization = 0.1;
net.performParam.normalization = 'none';
```


Input Arguments

net - neural network

network object
Neural network, specified as a network object.
Example: net $=$ feedforwardnet(10);

targets - neural network target values

matrix or cell array of numeric values
Neural network target values, specified as a matrix or cell array of numeric values. Network target values define the desired outputs, and can be specified as an N -by- Q matrix of $Q \mathrm{~N}$-element vectors, or an M-by-TS cell array where each element is an Ni-by-Q matrix. In each of these cases, N or $N i$ indicates a vector length, Q the number of
samples, M the number of signals for neural networks with multiple outputs, and TS is the number of time steps for time series data. targets must have the same dimensions as outputs.

The target matrix columns consist of all zeros and a single 1 in the position of the class being represented by that column vector. When $\mathrm{N}=1$, the software uses cross entropy for binary encoding, otherwise it uses cross entropy for 1 -of-N encoding. NaN values are allowed to indicate unknown or don't-care output values. The performance of NaN target values is ignored.

Data Types: double | cell

outputs - neural network output values

matrix or cell array of numeric values
Neural network output values, specified as a matrix or cell array of numeric values. Network output values can be specified as an N-by- Q matrix of $Q \mathrm{~N}$-element vectors, or an M-by-TS cell array where each element is an Ni -by- Q matrix. In each of these cases, N or Ni indicates a vector length, Q the number of samples, M the number of signals for neural networks with multiple outputs and TS is the number of time steps for time series data. outputs must have the same dimensions as targets.

Outputs can include NaN to indicate unknown output values, presumably produced as a result of NaN input values (also representing unknown or don't-care values). The performance of NaN output values is ignored.

General case ($\mathrm{N}>=2$): The columns of the output matrix represent estimates of class membership, and should sum to 1 . You can use the softmax transfer function to produce such output values. Use patternnet to create networks that are already set up to use cross-entropy performance with a softmax output layer.

Data Types: double | cell

perfWeights - performance weights

\{1\} (default) | vector or cell array of numeric values
Performance weights, specified as a vector or cell array of numeric values. Performance weights are an optional argument defining the importance of each performance value, associated with each target value, using values between 0 and 1 . Performance values of 0 indicate targets to ignore, values of 1 indicate targets to be treated with normal importance. Values between 0 and 1 allow targets to be treated with relative importance.

Performance weights have many uses. They are helpful for classification problems, to indicate which classifications (or misclassifications) have relatively greater benefits (or costs). They can be useful in time series problems where obtaining a correct output on some time steps, such as the last time step, is more important than others. Performance weights can also be used to encourage a neural network to best fit samples whose targets are known most accurately, while giving less importance to targets which are known to be less accurate.
perfWeights can have the same dimensions as targets and outputs. Alternately, each dimension of the performance weights can either match the dimension of targets and outputs, or be 1 . For instance, if targets is an N-by- Q matrix defining Q samples of N -element vectors, the performance weights can be N -by- Q indicating a different importance for each target value, or N -by- 1 defining a different importance for each row of the targets, or 1-by-Q indicating a different importance for each sample, or be the scalar 1 (i.e. 1-by-1) indicating the same importance for all target values.

Similarly, if outputs and targets are cell arrays of matrices, the perfWeights can be a cell array of the same size, a row cell array (indicating the relative importance of each time step), a column cell array (indicating the relative importance of each neural network output), or a cell array of a single matrix or just the matrix (both cases indicating that all matrices have the same importance values).

For any problem, a perfWeights value of $\{1\}$ (the default) or the scalar 1 indicates all performances have equal importance.

Data Types: double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., Namen, Valuen.

Example: 'normalization','standard' specifies the inputs and targets to be normalized to the range $(-1,+1)$.
regularization - proportion of performance attributed to weight/bias values
0 (default) | numeric value in the range $(0,1)$

Proportion of performance attributed to weight/bias values, specified as a double between 0 (the default) and 1. A larger value penalizes the network for large weights, and the more likely the network function will avoid overfitting.

Example: 'regularization',0
Data Types: single | double
normalization - Normalization mode for outputs, targets, and errors
'none' (default) | 'standard' | 'percent'
Normalization mode for outputs, targets, and errors, specified as 'none', 'standard', or 'percent'.' none' performs no normalization. 'standard' results in outputs and targets being normalized to $(-1,+1)$, and therefore errors in the range $(-2,+2)$. 'percent ' normalizes outputs and targets to $(-0.5,0.5)$ and errors to $(-1,1)$.

Example: 'normalization','standard'

Data Types: char

Output Arguments

perf - network performance

double
Network performance, returned as a double in the range $(0,1)$.

See Also
mae | mse | patternnet | sae | softmax | sse

Introduced in R2013b

defaultderiv

Default derivative function

Syntax

```
defaultderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
defaultderiv('de_dwb',net,X,T,Xi,Ai,EW)
```


Description

This function chooses the recommended derivative algorithm for the type of network whose derivatives are being calculated. For static networks, defaultderiv calls staticderiv; for dynamic networks it calls bttderiv to calculate the gradient and fpderiv to calculate the Jacobian.
defaultderiv('dperf_dwb', net, X,T,Xi,Ai,EW) takes these arguments,

net	Neural network
X	Inputs, an R-by-Q matrix (or N-by-TS cell array of Ri-by-Q matrices)
T	Targets, an S-by-Q matrix (or M-by-TS cell array of Si-by-Q matrices)
Xi	Initial input delay states (optional)
Ai	Initial layer delay states (optional)
EW	Error weights (optional)

and returns the gradient of performance with respect to the network's weights and biases, where R and S are the number of input and output elements and Q is the number of samples (or N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).
defaultderiv('de_dwb', net, X,T,Xi,Ai, EW) returns the Jacobian of errors with respect to the network's weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```
[x,t] = simplefit dataset;
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = defaultderiv('dperf_dwb',net,x,t)
```


See Also

```
bttderiv | fpderiv | num2deriv| num5deriv| staticderiv
```

Introduced in R2010b

disp

Neural network properties

Syntax

disp(net)

To Get Help

Type help network/disp.

Description

disp(net) displays a network's properties.

Examples

Here a perceptron is created and displayed.

```
net = newp([-1 1; 0 2],3);
disp(net)
```


See Also

adapt | display | init | sim | train

Introduced before R2006a

display

Name and properties of neural network variables

Syntax

display(net)

To Get Help

Type help network/display.

Description

display (net) displays a network variable's name and properties.

Examples

Here a perceptron variable is defined and displayed.

```
net = newp([-1 1; 0 2],3);
display(net)
```

display is automatically called as follows:
net

See Also
adapt | disp | init | sim | train
Introduced before R2006a

dist

Euclidean distance weight function

Syntax

```
Z = dist(W, P,FP)
dim = dist('size',S,R,FP)
dw = dist('dw',W,P,Z,FP)
D = dist(pos)
info = dist('code')
```


Description

Weight functions apply weights to an input to get weighted inputs.
$Z=\operatorname{dist}(W, P, F P)$ takes these inputs,

W	S-by-R weight matrix
P	R-by-Q matrix of Q input (column) vectors
FP	Struct of function parameters (optional, ignored)

and returns the $S-$ by- Q matrix of vector distances.
dim $=$ dist('size', $S, R, F P$) takes the layer dimension S, input dimension R, and function parameters, and returns the weight size [S-by-R].
$d w=$ dist('dw', $\mathrm{W}, \mathrm{P}, \mathrm{Z}, \mathrm{FP}$) returns the derivative of Z with respect to W .
dist is also a layer distance function which can be used to find the distances between neurons in a layer.

```
D = dist(pos) takes one argument,
pos 
```

and returns the S-by-S matrix of distances.
info = dist('code') returns information about this function. The following codes are supported:

'deriv'	Name of derivative function
'fullderiv'	Full derivative = 1, linear derivative = 0
'pfullderiv'	Input: reduced derivative = 2, full derivative = 1, linear derivative $=0$
'name'	Full name
' fpnames'	Returns names of function parameters
'fpdefaults'	Returns default function parameters

Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input Z.

```
W = rand (4,3);
P = rand(3,1);
Z = dist(W,P)
```

Here you define a random matrix of positions for 10 neurons arranged in threedimensional space and find their distances.

```
pos = rand(3,10);
D = dist(pos)
```


Network Use

You can create a standard network that uses dist by calling newpnn or newgrnn.
To change a network so an input weight uses dist, set net.inputWeights\{i,j\}.weightFcn to 'dist'. For a layer weight, set net.layerWeights\{i,j\}.weightFen to 'dist'.

To change a network so that a layer's topology uses dist, set net.layers\{i\}.distanceFcn to 'dist'.

In either case, call sim to simulate the network with dist.

See newpnn or newgrnn for simulation examples.

Algorithms

The Euclidean distance d between two vectors X and Y is
$d=\operatorname{sum}\left((x-y) \cdot{ }^{\wedge} 2\right) \cdot \wedge 0 \cdot 5$

See Also

dotprod | linkdist | mandist | negdist | normprod | sim

Introduced before R2006a

distdelaynet

Distributed delay network

Syntax

distdelaynet(delays,hiddenSizes,trainFcn)

Description

Distributed delay networks are similar to feedforward networks, except that each input and layer weights has a tap delay line associated with it. This allows the network to have a finite dynamic response to time series input data. This network is also similar to the time delay neural network (timedelaynet), which only has delays on the input weight.
distdelaynet (delays,hiddenSizes,trainFcn) takes these arguments,

delays	Row vector of increasing 0 or positive delays (default $=1: 2$)
hiddenSizes	Row vector of one or more hidden layer sizes $($ default $=10)$
trainFcn	Training function (default $=$ 'trainlm')

and returns a distributed delay neural network.

Examples

Distributed Delay Network

Here a distributed delay neural network is used to solve a simple time series problem.

```
[X,T] = simpleseries_dataset;
net = distdelaynet({1:2,1:2},10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
```

```
Y = net(Xs,Xi,Ai);
perf = perform(net,Y,Ts)
```

perf =
0.0323

See Also

narnet | narxnet | preparets | removedelay | timedelaynet

Introduced in R2010b

divideblock

Divide targets into three sets using blocks of indices

Syntax

[trainInd,valInd,testInd] =
divideblock(Q,trainRatio,valRatio,testRatio)

Description

[trainInd,valInd,testInd] =
divideblock (Q,trainRatio,valRatio,testRatio) separates targets into three sets: training, validation, and testing. It takes the following inputs:

Q	Number of targets to divide up.
trainRatio	Ratio of targets for training. Default $=0.7$.
valRatio	Ratio of targets for validation. Default $=0.15$.
testRatio	Ratio of targets for testing. Default $=0.15$.

and returns

trainInd	Training indices
val Ind	Validation indices
test Ind	Test indices

Examples

```
[trainInd,valInd,testInd] = divideblock(3000,0.6,0.2,0.2);
```


Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when train is called.

```
net.divideFcn
net.divideParam
net.divideMode
```


See Also

divideind | divideint | dividerand | dividetrain

Introduced in R2008a

divideind

Divide targets into three sets using specified indices

Syntax

[trainInd,valInd,testInd] = divideind(Q,trainInd,valInd,testInd)

Description

[trainInd,valInd,testInd] = divideind(Q,trainInd,valInd,testInd) separates targets into three sets: training, validation, and testing, according to indices provided. It actually returns the same indices it receives as arguments; its purpose is to allow the indices to be used for training, validation, and testing for a network to be set manually.

It takes the following inputs,

Q	Number of targets to divide up
trainInd	Training indices
valInd	Validation indices
testInd	Test indices

and returns

trainInd	Training indices (unchanged)
val Ind	Validation indices (unchanged)
test Ind	Test indices (unchanged)

Examples

```
[trainInd,valInd,testInd] = ...
divideind(3000,1:2000,2001:2500,2501:3000);
```


Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when train is called.

```
net.divideFcn
net.divideParam
net.divideMode
```


See Also

divideblock | divideint | dividerand | dividetrain

Introduced in R2008a

divideint

Divide targets into three sets using interleaved indices

Syntax

```
[trainInd,valInd,testInd] =
divideint(Q,trainRatio,valRatio,testRatio)
```


Description

[trainInd,valInd,testInd] =
divideint (Q,trainRatio,valRatio, testRatio) separates targets into three sets:
training, validation, and testing. It takes the following inputs,

Q	Number of targets to divide up.
trainRatio	Ratio of vectors for training. Default $=0.7$.
valRatio	Ratio of vectors for validation. Default $=0.15$.
testRatio	Ratio of vectors for testing. Default $=0.15$.

and returns

train Ind	Training indices
val Ind	Validation indices
test Ind	Test indices

Examples

```
[trainInd,valInd,testInd] = divideint(3000,0.6,0.2,0.2);
```


Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when train is called.

```
net.divideFcn
net.divideParam
net.divideMode
```


See Also

divideblock| divideind | dividerand | dividetrain

Introduced in R2008a

dividerand

Divide targets into three sets using random indices

Syntax

[trainInd,valInd,testInd] =
dividerand(Q,trainRatio,valRatio,testRatio)

Description

[trainInd, valInd,testInd] =
dividerand (Q,trainRatio,valRatio,testRatio) separates targets into three sets: training, validation, and testing. It takes the following inputs,

Q	Number of targets to divide up.
trainRatio	Ratio of vectors for training. Default $=0.7$.
valRatio	Ratio of vectors for validation. Default $=0.15$.
testRatio	Ratio of vectors for testing. Default $=0.15$.

and returns

train Ind	Training indices
valInd	Validation indices
testInd	Test indices

Examples

```
[trainInd,valInd,testInd] = dividerand(3000,0.6,0.2,0.2);
```


Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when train is called.

```
net.divideFcn
net.divideParam
net.divideMode
```


See Also

divideblock | divideind | divideint | dividetrain

Introduced in R2008a

dividetrain

Assign all targets to training set

Syntax

[trainInd,valInd,testInd] =
dividetrain(Q,trainRatio,valRatio,testRatio)

Description

[trainInd,valInd,testInd] =
dividetrain (Q,trainRatio,valRatio,testRatio) assigns all targets to the training set and no targets to either the validation or test sets. It takes the following inputs,
and returns

train Ind	Training indices equal to $1: \mathrm{Q}$
val Ind	Empty validation indices, []
test Ind	Empty test indices, []

Examples

```
[trainInd,valInd,testInd] = dividetrain(3000);
```


Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when train is called.

```
net.divideFcn
net.divideParam
net.divideMode
```


See Also

divideblock | divideind | divideint | dividerand

Introduced in R2010b

dotprod

Dot product weight function

Syntax

```
Z = dotprod(W,P,FP)
dim = dotprod('size',S,R,FP)
dw = dotprod('dw',W,P,Z,FP)
info = dotprod('code')
```


Description

Weight functions apply weights to an input to get weighted inputs.
$Z=\operatorname{dotprod}(W, P, F P)$ takes these inputs,

W	S-by-R weight matrix
P	R-by-Q matrix of Q input (column) vectors
FP	Struct of function parameters (optional, ignored)

and returns the S-by-Q dot product of W and P .
$\operatorname{dim}=$ dotprod('size', $S, R, F P)$ takes the layer dimension S, input dimension R, and function parameters, and returns the weight size [S-by-R].
$d w=$ dotprod('dw', W, P, Z, FP) returns the derivative of Z with respect to W.
info = dotprod('code') returns information about this function. The following codes are defined:

'deriv'	Name of derivative function
'pfullderiv'	Input: reduced derivative = 2, full derivative = 1, linear derivative = 0
'wfullderiv'	Weight: reduced derivative = 2, full derivative = 1, linear derivative = 0

'name'	Full name
'fpnames'	Returns names of function parameters
'fpdefaults'	Returns default function parameters

Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input Z.
$\mathrm{W}=\mathrm{rand}(4,3)$;
$\mathrm{P}=$ rand $(3,1)$;
$Z=\operatorname{dotprod}(W, P)$

Network Use

You can create a standard network that uses dotprod by calling feedforwardnet.
To change a network so an input weight uses dotprod, set net.inputWeights $\{i, j\}$.weightFcn to 'dotprod'. For a layer weight, set net.layerWeights\{i,j\}.weightFen to 'dotprod'.

In either case, call sim to simulate the network with dotprod.

See Also

dist | feedforwardnet | negdist | normprod | sim

Introduced before R2006a

elliotsig

Elliot symmetric sigmoid transfer function

Syntax

```
A = elliotsig(N)
```


Description

Transfer functions convert a neural network layer's net input into its net output.
$A=$ elliotsig (N) takes an S-by-Q matrix of $S N$-element net input column vectors and returns an S-by- Q matrix A of output vectors, where each element of N is squashed from the interval [-inf inf] to the interval [-1 1] with an "S-shaped" function.

The advantage of this transfer function over other sigmoids is that it is fast to calculate on simple computing hardware as it does not require any exponential or trigonometric functions. Its disadvantage is that it only flattens out for large inputs, so its effect is not as local as other sigmoid functions. This might result in more training iterations, or require more neurons to achieve the same accuracy.

Examples

Calculate a layer output from a single net input vector:

```
n = [0; 1; -0.5; 0.5];
a = elliotsig(n);
```

Plot the transfer function:

```
n = -5:0.01:5;
plot(n, elliotsig(n))
set(gca,'dataaspectratio',[1 1 1],'xgrid','on','ygrid','on')
```

For a network you have already defined, change the transfer function for layer i:

```
net.layers{i}.transferFcn = 'elliotsig';
```


See Also

elliot2sig| logsig|tansig
Introduced in R2012b

elliot2sig

Elliot 2 symmetric sigmoid transfer function

Syntax

```
A = elliot2sig(N)
```


Description

Transfer functions convert a neural network layer's net input into its net output. This function is a variation on the original Elliot sigmoid function. It has a steeper slope, closer to tansig, but is not as smooth at the center.
$A=$ elliot2sig(N) takes an S-by-Q matrix of S N-element net input column vectors and returns an S-by- Q matrix A of output vectors, where each element of N is squashed from the interval [-inf inf] to the interval $\left[\begin{array}{ll}-1 & 1\end{array}\right]$ with an "S-shaped" function.

The advantage of this transfer function over other sigmoids is that it is fast to calculate on simple computing hardware as it does not require any exponential or trigonometric functions. Its disadvantage is that it departs from the classic sigmoid shape around zero.

Examples

Calculate a layer output from a single net input vector:

```
n = [0; 1; -0.5; 0.5];
a = elliot2sig(n);
```

Plot the transfer function:

```
n = -5:0.01:5;
plot(n, elliot2sig(n))
set(gca,'dataaspectratio',[1 1 1],'xgrid','on','ygrid','on')
```

For a network you have already defined, change the transfer function for layer i:

```
net.layers{i}.transferFcn = 'elliot2sig';
```


See Also

elliotsig | logsig | tansig

Introduced in R2012b

elmannet

Elman neural network

Syntax

elmannet(layerdelays,hiddenSizes,trainFcn)

Description

Elman networks are feedforward networks (feedforwardnet) with the addition of layer recurrent connections with tap delays.

With the availability of full dynamic derivative calculations (fpderiv and bttderiv), the Elman network is no longer recommended except for historical and research purposes. For more accurate learning try time delay (timedelaynet), layer recurrent (layrecnet), NARX (narxnet), and NAR (narnet) neural networks.

Elman networks with one or more hidden layers can learn any dynamic input-output relationship arbitrarily well, given enough neurons in the hidden layers. However, Elman networks use simplified derivative calculations (using staticderiv, which ignores delayed connections) at the expense of less reliable learning.
elmannet(layerdelays, hiddenSizes, trainFcn) takes these arguments,

layerdelays	Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes	Row vector of one or more hidden layer sizes (default = 10)
trainFcn	Training function (default = 'trainlm')

and returns an Elman neural network.

Examples

Here an Elman neural network is used to solve a simple time series problem.

```
[X,T] = simpleseries dataset;
net = elmannet(1:2,10})
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)
```


See Also

layrecnet | narnet | narxnet | preparets | removedelay | timedelaynet

Introduced in R2010b

errsurf

Error surface of single-input neuron

Syntax

```
errsurf(P,T,WV,BV,F)
```


Description

errsurf $(P, T, W V, B V, F)$ takes these arguments,

P	1-by-Q matrix of input vectors
T	1-by-Q matrix of target vectors
WV	Row vector of values of W
BV	Row vector of values of B
F	Transfer function (string)

and returns a matrix of error values over WV and BV.

Examples

```
p = [-6.0 -6.1 -4.1 -4.0 +4.0 +4.1 +6.0 +6.1];
t = [+0.0 +0.0 +.97 +.99 +.01 +.03 +1.0 +1.0];
wv = -1:.1:1; bv = -2.5:.25:2.5;
es = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,es,[60 30])
```


See Also

plotes

Introduced before R2006a

extendts

Extend time series data to given number of timesteps

Syntax

extendts (x,ts,v)

Description

extendts ($\mathrm{x}, \mathrm{ts}, \mathrm{v}$) takes these values,

x	Neural network time series data
$t s$	Number of timesteps
v	Value

and returns the time series data either extended or truncated to match the specified number of timesteps. If the value v is specified, then extended series are filled in with that value, otherwise they are extended with random values.

Examples

Here, a 20 -timestep series is created and then extended to 25 timesteps with the value zero.
$\mathrm{x}=$ nndata $(5,4,20)$;
$y=$ extendts $(x, 25,0)$

See Also

catsamples | nndata| preparets

Introduced in R2010b

feedforwardnet

Feedforward neural network

Syntax

feedforwardnet(hiddenSizes,trainFcn)

Description

Feedforward networks consist of a series of layers. The first layer has a connection from the network input. Each subsequent layer has a connection from the previous layer. The final layer produces the network's output.

Feedforward networks can be used for any kind of input to output mapping. A feedforward network with one hidden layer and enough neurons in the hidden layers, can fit any finite input-output mapping problem.

Specialized versions of the feedforward network include fitting (fitnet) and pattern recognition (patternnet) networks. A variation on the feedforward network is the cascade forward network (cascadeforwardnet) which has additional connections from the input to every layer, and from each layer to all following layers.
feedforwardnet (hiddenSizes, trainFen) takes these arguments,

hiddenSizes	Row vector of one or more hidden layer sizes (default = 10)
trainFen	Training function (default = 'trainlm')

and returns a feedforward neural network.

Examples

Feedforward Neural Network

This example shows how to use feedforward neural network to solve a simple problem.

```
[x,t] = simplefit dataset;
net = feedforwardnet(10);
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)
perf =
    1.4639e-04
```


See Also

cascadeforwardnet | fitnet| network| patternnet

Topics

"Neural Network Object Properties"
"Neural Network Subobject Properties"
Introduced in R2010b

fixunknowns

Process data by marking rows with unknown values

Syntax

```
[y,ps] = fixunknowns(X)
[y,ps] = fixunknowns(X,FP)
Y = fixunknowns('apply',X,PS)
X = fixunknowns('reverse',Y,PS)
name = fixunknowns('name')
fp = fixunknowns('pdefaults')
pd = fixunknowns('pdesc')
fixunknowns('pcheck',fp)
```


Description

fixunknowns processes matrices by replacing each row containing unknown values (represented by NaN) with two rows of information.

The first row contains the original row, with NaN values replaced by the row's mean. The second row contains 1 and 0 values, indicating which values in the first row were known or unknown, respectively.
[y,ps] = fixunknowns (X) takes these inputs,

and returns

Y	M-by-Q matrix with $\mathrm{M}-\mathrm{N}$ rows added
PS	Process settings that allow consistent processing of values

$[y, p s]=$ fixunknowns (X,FP) takes an empty struct FP of parameters.
$\mathrm{Y}=$ fixunknowns('apply',X,PS) returns Y , given X and settings PS.
X = fixunknowns('reverse',Y,PS) returns X, given Y and settings PS.
name $=$ fixunknowns('name') returns the name of this process method.

pd $=$ fixunknowns('pdesc') returns the process parameter descriptions.
fixunknowns('pcheck',fp) throws an error if any parameter is illegal.

Examples

Here is how to format a matrix with a mixture of known and unknown values in its second row:

```
x1 = [1 2 3 4; 4 NaN 6 5; NaN 2 3 NaN]
[y1,ps] = fixunknowns(x1)
```

Next, apply the same processing settings to new values:

```
x2 = [4 5 3 2; NaN 9 NaN 2; 4 9 5 2]
y2 = fixunknowns('apply',x2,ps)
```

Reverse the processing of y 1 to get x 1 again.

```
x1 again = fixunknowns('reverse',y1,ps)
```


Definitions

Recode Data with NaNs Using fixunknowns

If you have input data with unknown values, you can represent them with NaN values. For example, here are five 2 -element vectors with unknown values in the first element of two of the vectors:

```
p1 = [1 NaN 3 2 NaN; 3 1 -1 2 4];
```

The network will not be able to process the NaN values properly. Use the function fixunknowns to transform each row with NaN values (in this case only the first row) into two rows that encode that same information numerically.

```
[p2,ps] = fixunknowns(p1);
```

Here is how the first row of values was recoded as two rows.
p2 =

1	2	3	2	2
1	0	1	1	0
3	1	-1	2	4

The first new row is the original first row, but with the mean value for that row (in this case 2) replacing all NaN values. The elements of the second new row are now either 1, indicating the original element was a known value, or 0 indicating that it was unknown. The original second row is now the new third row. In this way both known and unknown values are encoded numerically in a way that lets the network be trained and simulated.

Whenever supplying new data to the network, you should transform the inputs in the same way, using the settings ps returned by fixunknowns when it was used to transform the training input data.

```
p2new = fixunknowns('apply',p1new,ps);
```

The function fixunkowns is only recommended for input processing. Unknown targets represented by NaN values can be handled directly by the toolbox learning algorithms. For instance, performance functions used by backpropagation algorithms recognize NaN values as unknown or unimportant values.

See Also

mapminmax | mapstd | processpca

Introduced in R2006a

formwb

Form bias and weights into single vector

Syntax

```
formwb (net,b,IW, LW)
```


Description

formwb (net, b, IW, LW) takes a neural network and bias b, input weight IW, and layer weight LW values, and combines the values into a single vector.

Examples

Here a network is created, configured, and its weights and biases formed into a vector.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = configure(net,x,t);
wb = formwb(net, net.b,net.IW,net.LW)
```


See Also

getwb | separatewb | setwb

Introduced in R2010b

fpderiv

Forward propagation derivative function

Syntax

fpderiv('dperf_dwb', net, X,T,Xi,Ai,EW)
fpderiv('de_dw'', net, X, T, Xi,Ai, EW)

Description

This function calculates derivatives using the chain rule from inputs to outputs, and in the case of dynamic networks, forward through time.
fpderiv('dperf_dwb', net,X,T,Xi,Ai,EW) takes these arguments,

net	Neural network
X	Inputs, an R-by-Q matrix (or N-by-TS cell array of Ri-by-Q matrices)
T	Targets, an S-by-Q matrix (or M-by-TS cell array of Si-by-Q matrices)
Xi	Initial input delay states (optional)
Ai	Initial layer delay states (optional)
EW	Error weights (optional)

and returns the gradient of performance with respect to the network's weights and biases, where R and S are the number of input and output elements and Q is the number of samples (or N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).
fpderiv('de_dwb', net, X,T,Xi,Ai, EW) returns the Jacobian of errors with respect to the network's weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```
[x,t] = simplefit dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = fpderiv('dperf_dwb',net,x,t)
jwb = fpderiv('de_dwb',net,x,t)
```


See Also

bttderiv| defaultderiv| num2deriv | num5deriv| staticderiv

Introduced in R2010b

fromnndata

Convert data from standard neural network cell array form

Syntax

fromnndata(x,toMatrix, columnSample, cellTime)

Description

fromnndata(x,toMatrix,columnSample, cellTime) takes these arguments,

net	Neural network
toMatrix	True if result is to be in matrix form
columnSample	True if samples are to be represented as columns, false if rows
cellTime	True if time series are to be represented as a cell array, false if represented with a matrix

and returns the original data reformatted accordingly.

Examples

Here time-series data is converted from a matrix representation to standard cell array representation, and back. The original data consists of a 5 -by- 6 matrix representing one time-series sample consisting of a 5 -element vector over 6 timesteps arranged in a matrix with the samples as columns.

```
x = rands (5,6)
columnSamples = true; % samples are by columns.
cellTime = false; % time-steps in matrix, not cell array.
[y,wasMatrix] = tonndata(x,columnSamples,cellTime)
x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)
```

Here data is defined in standard neural network data cell form. Converting this data does not change it. The data consists of three time series samples of 2 -element signals over 3 timesteps.

```
x = {rands (2,3);rands (2,3);rands (2,3)}
columnSamples = true;
cellTime = true;
[y,wasMatrix] = tonndata(x)
x2 = fromnndata(y,wasMatrix,columnSamples)
```


See Also

tonndata

Introduced in R2010b

gadd

Generalized addition

Syntax

```
gadd (a,b)
```


Description

gadd (a, b) takes two matrices or cell arrays, and adds them in an element-wise manner.

Examples

Add Matrix and Cell Array Values

This example shows how to add matrix and cell array values.

```
gadd([1 2 3; 4 5 6],[10;20])
ans =
    11 12 13
    24 25 26
gadd({1 2; 3 4},{1 3; 5 2})
ans =
    2x2 cell array
    {[2]} {[5]}
    {[8]} {[6]}
```

```
gadd({1 2 3 4},{10;20;30})
ans =
    3x4 cell array
\begin{tabular}{llll}
\(\{[11]\}\) & \(\{[12]\}\) & \(\{[13]\}\) & \(\{[14]\}\) \\
\(\{[21]\}\) & \(\{[22]\}\) & \(\{[23]\}\) & \(\{[24]\}\) \\
\(\{[31]\}\) & \(\{[32]\}\) & \(\{[33]\}\) & \(\{[34]\}\)
\end{tabular}
```


See Also

gdivide | gmultiply | gnegate | gsqrt | gsubtract

Introduced in R2010b

gdivide

Generalized division

Syntax

```
gdivide(a,b)
```


Description

gdivide (a, b) takes two matrices or cell arrays, and divides them in an element-wise manner.

Examples

Divide Matrix and Cell Array Values

This example shows how to divide matrix and cell array values.

```
gdivide([1 2 3; 4 5 6],[10;20])
ans =
    0.1000 0.2000 0.3000
    0.2000 0.2500 0.3000
gdivide({1 2; 3 4},{1 3; 5 2})
ans =
    2x2 cell array
    {[ 1]} {[0.6667]}
```

```
    {[0.6000]} {[ 2]}
gdivide({1 2 3 4},{10;20;30})
ans =
    3x4 cell array
\begin{tabular}{llll}
\(\{[0.1000]\}\) & \(\{[0.2000]\}\) & \(\{[0.3000]\}\) & \(\{[0.4000]\}\) \\
\(\{[0.0500]\}\) & \(\{[0.1000]\}\) & \(\{[0.1500]\}\) & \(\{[0.2000]\}\) \\
\(\{[0.0333]\}\) & \(\{[0.0667]\}\) & \(\{[0.1000]\}\) & \(\{[0.1333]\}\)
\end{tabular}
```


See Also

gadd | gmultiply | gnegate | gsqrt | gsubtract

Introduced in R2010b

gensim

Generate Simulink block for neural network simulation

Syntax

```
gensim(net,st)
```


To Get Help

Type help network/gensim.

Description

gensim(net, st) creates a Simulink® system containing a block that simulates neural network net.
gensim (net, st) takes these inputs:

net	Neural network
st	Sample time (default $=1)$

and creates a Simulink system containing a block that simulates neural network net with a sampling time of st.

If net has no input or layer delays (net. numInputDelays and net. numLayerDelays are both 0), you can use -1 for st to get a network that samples continuously.

Examples

```
[x,t] = simplefit dataset;
net = feedforwardnet(10);
net = train(net,x,t)
gensim(net)
```

Introduced before R2006a

genFunction

Generate MATLAB function for simulating neural network

Syntax

```
genFunction(net,pathname)
genFunction(___,'MatrixOnly','yes')
genFunction(
```

\qquad

``` ,'ShowLinks','no')
```


Description

genFunction (net, pathname) generates a complete stand-alone MATLAB® function for simulating a neural network including all settings, weight and bias values, module functions, and calculations in one file. The result is a standalone MATLAB function file. You can also use this function with MATLAB Compiler ${ }^{\text {TM }}$ and MATLAB Coder ${ }^{\text {™ }}$ tools.
genFunction(\qquad ,'MatrixOnly','yes') overrides the default cell/matrix notation and instead generates a function that uses only matrix arguments compatible with MATLAB Coder tools. For static networks, the matrix columns are interpreted as independent samples. For dynamic networks, the matrix columns are interpreted as a series of time steps. The default value is 'no'.
genFunction (\qquad ,'ShowLinks','no') disables the default behavior of displaying links to generated help and source code. The default is 'yes'.

Examples

Create Functions from Static Neural Network

This example shows how to create a MATLAB function and a MEX-function from a static neural network.

First, train a static network and calculate its outputs for the training data.

```
[x,t] = bodyfat dataset;
bodyfatNet = feedforwardnet(10);
bodyfatNet = train(bodyfatNet,x,t);
y = bodyfatNet(x);
```

Next, generate and test a MATLAB function. Then the new function is compiled to a shared/dynamically linked library with mcc.

```
genFunction(bodyfatNet,'bodyfatFcn');
y2 = bodyfatFcn(x);
accuracy2 = max(abs(y-y2))
mcc -W lib:libBodyfat -T link:lib bodyfatFcn
```

Next, generate another version of the MATLAB function that supports only matrix arguments (no cell arrays), and test the function. Use the MATLAB Coder tool codegen to generate a MEX-function, which is also tested.

```
genFunction(bodyfatNet,'bodyfatFcn','MatrixOnly','yes');
y3 = bodyfatFcn(x);
accuracy3 = max(abs(y-y3))
x1Type = coder.typeof(double(0),[13 Inf]); % Coder type of input 1
codegen bodyfatFcn.m -config:mex -o bodyfatCodeGen -args {x1Type}
y4 = bodyfatodeGen(x);
accuracy4 = max(abs (y-y4))
```


Create Functions from Dynamic Neural Network

This example shows how to create a MATLAB function and a MEX-function from a dynamic neural network.

First, train a dynamic network and calculate its outputs for the training data.

```
[x,t] = maglev_dataset;
maglevNet = narxnet(1:2,1:2,10);
[X,Xi,Ai,T] = preparets(maglevNet,x,{},t);
maglevNet = train(maglevNet,X,T,Xi,Ai);
[y,xf,af] = maglevNet(X,Xi,Ai);
```

Next, generate and test a MATLAB function. Use the function to create a shared/ dynamically linked library with mcc.

```
genFunction(maglevNet,'maglevFcn');
[y2,xf,af] = maglevFcn(X,Xi,Ai);
```

```
accuracy2 = max(abs(cell2mat(y)-cell2mat(y2)))
mcc -W lib:libMaglev -T link:lib maglevFcn
```

Next, generate another version of the MATLAB function that supports only matrix arguments (no cell arrays), and test the function. Use the MATLAB Coder tool codegen to generate a MEX-function, which is also tested.

```
genFunction(maglevNet,'maglevFcn','MatrixOnly','yes');
x1 = cell2mat(X(1,:)); % Convert each input to matrix
x2 = cell2mat(X(2,:));
xi1 = cell2mat(Xi(1,:)); % Convert each input state to matrix
xi2 = cell2mat(Xi(2,:));
[y3,xf1,xf2] = maglevFcn(x1,x2,xi1,xi2);
accuracy3 = max(abs(cell2mat(y)-y3))
x1Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 1
x2Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 2
xilType = coder.typeof(double(0),[1 2]); % Coder type of input 1 states
xi2Type = coder.typeof(double(0),[1 2]); % Coder type of input 2 states
codegen maglevFcn.m -config:mex -o maglevNetCodeGen -args {x1Type x2Type xilType xi2Type}
[y4,xf1,xf2] = maglevNetCodeGen(x1,x2,xi1,xi2);
dynamic_codegen_accuracy = max(abs(cell2mat(y)-y4))
```


Input Arguments

net - neural network

network object
Neural network, specified as a network object.
Example: net = feedforwardnet(10);

pathname - location and name of generated function file

(default) | character string
Location and name of generated function file, specified as a character string. If you do not specify a file name extension of . m , it is automatically appended. If you do not specify a path to the file, the default location is the current working folder.

Example: 'myFcn.m'
Data Types: char

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder ${ }^{\text {TM }}$.
Usage notes and limitations:

- You can use genFunction in the Neural Network Toolbox to generate a standalone MATLAB function for a trained neural network. You can generate C/C++ code from this standalone MATLAB function. To generate Simulink blocks, use the genSim function. See "Deploy Trained Neural Network Functions".

See Also

gensim

Topics

"Deploy Trained Neural Network Functions"

Introduced in R2013b

getelements

Get neural network data elements

Syntax

```
getelements (x,ind)
```


Description

getelements (x, ind) returns the elements of neural network data x indicated by the indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, the result is the ind rows of x .
If x is a cell array, the result is a cell array with as many columns as x, whose elements $(1, i)$ are matrices containing the ind rows of $[x\{:, i\}]$.

Examples

This code gets elements 1 and 3 from matrix data:

```
x = [ll 2 3; 4 7 4]
y = getelements(x,[1 3])
```

This code gets elements 1 and 3 from cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
```

$\mathrm{y}=$ getelements(x, [1 3])

See Also

```
catelements | getsamples | getsignals | gettimesteps | nndata |
numelements | setelements
```

Introduced in R2010b

getsamples

Get neural network data samples

Syntax

```
getsamples(x, ind)
```


Description

getsamples (x, ind) returns the samples of neural network data x indicated by the indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, the result is the ind columns of x.
If x is a cell array, the result is a cell array the same size as x , whose elements are the ind columns of the matrices in x.

Examples

This code gets samples 1 and 3 from matrix data:

```
x = [1 2 3; 4 7 4]
y = getsamples(x,[1 3])
```

This code gets elements 1 and 3 from cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
```

$\mathrm{y}=$ getsamples(x,[1 3])

See Also

catsamples | getelements | getsignals | gettimesteps | nndata|numsamples | setsamples

Introduced in R2010b

getsignals

Get neural network data signals

Syntax

```
getsignals(x,ind)
```


Description

getsignals($x, i n d$) returns the signals of neural network data x indicated by the indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, ind may only be 1 , which will return x, or [] which will return an empty matrix.

If x is a cell array, the result is the ind rows of x .

Examples

This code gets signal 2 from cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getsignals(x,2)
```


See Also

catsignals | getelements | getsamples | gettimesteps | nndata|numsignals | setsignals

Introduced in R2010b

getsiminit

Get Simulink neural network block initial input and layer delays states

Syntax

[xi,ai] = getsiminit(sysName, netName, net)

Description

[xi,ai] $=$ getsiminit $($ sysName, netName, net $)$ takes these arguments,	
sysName	The name of the Simulink system containing the neural network block
netName	The name of the Simulink neural network block
net	The original neural network

and returns,

xi	Initial input delay states
ai	Initial layer delay states

Examples

Here a NARX network is designed. The NARX network has a standard input and an open-loop feedback output to an associated feedback input.

```
[x,t] = simplenarx_dataset;
    net = narxnet(1:2,1:2,20);
    view(net)
    [xs,xi,ai,ts] = preparets(net,x,{},t);
    net = train(net,xs,ts,xi,ai);
    y = net(xs,xi,ai);
```

Now the network is converted to closed-loop, and the data is reformatted to simulate the network's closed-loop response.

```
net = closeloop(net);
view (net)
[xs,xi,ai,ts] = preparets(net,x, {},t);
y = net(xs,xi,ai);
```

Here the network is converted to a Simulink system with workspace input and output ports. Its delay states are initialized, inputs X1 defined in the workspace, and it is ready to be simulated in Simulink.

```
[sysName,netName] = gensim(net,'InputMode','Workspace',...
    'OutputMode','WorkSpace','SolverMode','Discrete');
setsiminit(sysName,netName,net,xi,ai,1);
x1 = nndata2sim(x,1,1);
```

Finally the initial input and layer delays are obtained from the Simulink model. (They will be identical to the values set with setsiminit.)

```
[xi,ai] = getsiminit(sysName,netName,net);
```


See Also

gensim | nndata2sim | setsiminit | sim2nndata

Introduced in R2010b

gettimesteps

Get neural network data timesteps

Syntax

```
gettimesteps(x,ind)
```


Description

gettimesteps (x, ind) returns the timesteps of neural network data x indicated by the indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, ind can only be 1 , which will return x; or [], which will return an empty matrix.

If x is a cell array the result is the ind columns of x .

Examples

This code gets timestep 2 from cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = gettimesteps(x,2)
```


See Also

```
cattimesteps | getelements | getsamples | getsignals | nndata|
numtimesteps | settimesteps
```


Introduced in R2010b

getwb

Get network weight and bias values as single vector

Syntax

```
getwb (net)
```


Description

getwb (net) returns a neural network's weight and bias values as a single vector.

Examples

Here a feedforward network is trained to fit some data, then its bias and weight values are formed into a vector.

```
[x,t] = simplefit dataset;
net = feedforwardnet(20);
net = train(net,x,t);
wb = getwb (net)
```

```
See Also
formwb | separatewb | setwb
```

Introduced in R2010b

gmultiply

Generalized multiplication

Syntax

```
gmultiply(a,b)
```


Description

gmultiply (a, b) takes two matrices or cell arrays, and multiplies them in an elementwise manner.

Examples

Multiply Matrix and Cell Array Values

This example shows how to multiply matrix and cell array values.

```
gmultiply([1 2 3; 4 5 6],[10;20])
ans =
    10 20 30
    80 100 120
gmultiply({1 2; 3 4},{1 3; 5 2})
ans =
    2x2 cell array
    {[ 1]} {[6]}
```

```
    {[15]} {[8]}
gmultiply({1 2 3 4},{10;20;30})
ans =
    3x4 cell array
\begin{tabular}{llll}
\(\{[10]\}\) & \(\{[20]\}\) & \(\{[30]\}\) & \(\{[40]\}\) \\
\(\{[20]\}\) & \(\{[40]\}\) & \(\{[60]\}\) & \(\{[80]\}\) \\
\(\{[30]\}\) & \(\{[60]\}\) & \(\{[90]\}\) & \(\{[120]\}\)
\end{tabular}
```


See Also

gadd | gdivide | gnegate | gsqrt | gsubtract

Introduced in R2010b

gnegate

Generalized negation

Syntax

```
gnegate(x)
```


Description

gnegate (x) takes a matrix or cell array of matrices, and negates their element values.

Examples

Negate a Cell Array

This example shows how to negate a cell array:

```
x = {[1 2; 3 4],[1 -3; -5 2]};
y = gnegate(x);
y{1}, y{2}
ans
    -1 
ans
    -1}\mp@code{3
```

See Also
gadd | gdivide | gmultiply | gsqrt | gsubtract
Introduced in R2010b

gpu2nndata

Reformat neural data back from GPU

Syntax

```
X = gpu2nndata(Y,Q)
X = gpu2nndata(Y)
X = gpu2nndata(Y,Q,N,TS)
```


Description

Training and simulation of neural networks require that matrices be transposed. But they do not require (although they are more efficient with) padding of column length so that each column is memory aligned. This function copies data back from the current GPU and reverses this transform. It can be used on data formatted with nndata2gpu or on the results of network simulation.
$X=$ gpu2nndata (Y, Q) copies the $Q Q-b y-N$ gpuArray Y into RAM, takes the first Q rows and transposes the result to get an N -by- Q matrix representing Q N -element vectors.
$\mathrm{X}=$ gpu2nndata (Y) calculates Q as the index of the last row in Y that is not all NaN values (those rows were added to pad Y for efficient GPU computation by nndata2gpu). Y is then transformed as before.
$\mathrm{X}=$ gpu2nndata $(\mathrm{Y}, \mathrm{Q}, \mathrm{N}, \mathrm{TS})$ takes a $Q Q-\mathrm{by}-\left(\mathrm{N}^{\star} T S\right)$ gpuArray where N is a vector of signal sizes, Q is the number of samples (less than or equal to the number of rows after alignment padding $Q Q$), and $T S$ is the number of time steps.

The gpuArray Y is copied back into RAM, the first Q rows are taken, and then it is partitioned and transposed into an M-by-TS cell array, where M is the number of elements in N. Each Y\{i,ts \} is an N(i)-by-Q matrix.

Examples

Copy a matrix to the GPU and back:

```
x = rand (5,6)
[y,q] = nndata2gpu(x)
x2 = gpu2nndata (y,q)
```

Copy from the GPU a neural network cell array data representing four time series, each consisting of five time steps of 2 -element and 3 -element signals.

```
x = nndata([2;3],4,5)
[y,q,n,ts] = nndata2gpu(x)
x2 = gpu2nndata(y,q,n,ts)
```


See Also

nndata2gpu

Introduced in R2012b

gridtop

Grid layer topology function

Syntax

gridtop (dimensions)

Description

pos = gridtop calculates neuron positions for layers whose neurons are arranged in an N-dimensional grid.
gridtop (dimensions) takes one argument:

dimensions	Row vector of dimension sizes

and returns an N -by- S matrix of N coordinate vectors where N is the number of dimensions and S is the product of dimensions.

Examples

Display Layer with Grid Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in an 8 -by- 5 grid pattern.

```
pos = gridtop([8 5]);
plotsom(pos)
```


See Also

hextop | randtop | tritop
Introduced before R2006a

gsqrt

Generalized square root

Syntax

```
gsqrt(x)
```


Description

gsqrt (x) takes a matrix or cell array of matrices, and generates the element-wise square root of the matrices.

Examples

Compute Element-Wise Square Root

This example shows how to get the element-wise square root of a cell array:

```
gsqrt({1 2; 3 4})
```

ans $=$
$2 x 2$ cell array
$\begin{array}{ll}\left\{\left[\begin{array}{ll}1]\end{array}\right\}\right. & \{[1.4142]\} \\ \{[1.7321]\} & \left\{\left[\begin{array}{ll}2]\}\end{array}\right.\right.\end{array}$

See Also

gadd | gdivide | gmultiply | gnegate | gsubtract

Introduced in R2010b

gsubtract

Generalized subtraction

Syntax

```
gsubtract(a,b)
```


Description

gsubtract (a, b) takes two matrices or cell arrays, and subtracts them in an elementwise manner.

Examples

Subtract Matrix and Cell Array Values

This example shows how to subtract matrix and cell array values.

```
gsubtract([1 2 3; 4 5 6],[10;20])
ans =
    -9 -8 -7
    -16 -15 -14
gsubtract({1 2; 3 4},{1 3; 5 2})
ans =
    2x2 cell array
    {[ 0] }
        {[-1]}
```

```
    {[-2]} {[ 2]}
gsubtract({1 2 3 4},{10;20;30})
ans =
    3x4 cell array
\begin{tabular}{llll}
\(\{[-9]\}\) & \(\{[-8]\}\) & \(\{[-7]\}\) & \(\{[-6]\}\) \\
\(\{[-19]\}\) & \(\{[-18]\}\) & \(\{[-17]\}\) & \(\{[-16]\}\) \\
\(\{[-29]\}\) & \(\{[-28]\}\) & \(\{[-27]\}\) & \(\{[-26]\}\)
\end{tabular}
```


See Also

gadd | gdivide | gmultiply | gnegate | gsqrt

Introduced in R2010b

hardlim

Hard-limit transfer function

Graph and Symbol

a

$a=\operatorname{hardlim}(n)$
Hard-Limit Transfer Function

Syntax

```
A = hardlim(N,FP)
```


Description

hardlim is a neural transfer function. Transfer functions calculate a layer's output from its net input.
A $=$ hardlim (N,FP) takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, the S-by-Q Boolean matrix with 1 s where $\mathrm{N} \geq 0$.
info = hardlim('code') returns information according to the code string specified:
hardlim('name') returns the name of this function.
hardlim('output',FP) returns the [min max] output range.

```
hardlim('active',FP) returns the [min max] active input range.
```

hardlim('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or s-by-e.
hardlim('fpnames') returns the names of the function parameters.
hardlim('fpdefaults') returns the default function parameters.

Examples

Here is how to create a plot of the hardlim transfer function.

```
n = -5:0.1:5;
a = hardlim(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'hardlim';
```


Algorithms

hardlim(n) $=1$ if $n \geq 0$
0 otherwise

See Also

hardlims | sim

Introduced before R2006a

hardlims

Symmetric hard-limit transfer function

Graph and Symbol

Symmetric Hard-Limit Transfer Function

Syntax

$A=$ hardlims (N, FP)

Description

hardlims is a neural transfer function. Transfer functions calculate a layer's output from its net input.
A $=$ hardlims ($N, F P$) takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, the S-by- $\mathrm{Q}+1 /-1$ matrix with +1 s where $\mathrm{N} \geq 0$.
info = hardlims('code') returns information according to the code string specified:
hardlims('name') returns the name of this function.
hardlims('output',FP) returns the [min max] output range.
hardlims('active',FP) returns the [min max] active input range.
hardlims('fullderiv') returns 1 or 0 , depending on whether $d A _d N$ is S-by-S-by- Q or s-by-e.
hardlims('fpnames') returns the names of the function parameters.
hardlims('fpdefaults') returns the default function parameters.

Examples

Here is how to create a plot of the hardlims transfer function.

```
n = -5:0.1:5;
a = hardlims(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'hardlims';
```


Algorithms

hardlims(n) $=1$ if $\mathrm{n} \geq 0,-1$ otherwise.

See Also

hardlim| sim

Introduced before R2006a

hextop

Hexagonal layer topology function

Syntax

```
hextop(dimensions)
```


Description

hextop calculates the neuron positions for layers whose neurons are arranged in an N dimensional hexagonal pattern.
hextop (dimensions) takes one argument:

dimensions	Row vector of dimension sizes

and returns an N-by-S matrix of N coordinate vectors where N is the number of dimensions and S is the product of dimensions.

Examples

Display Layer with Hexagonal Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in an 8-by- 5 hexagonal pattern.

```
pos = hextop([8 5]);
plotsom(pos)
```


See Also

gridtop | randtop | tritop
Introduced before R2006a

ind2vec

Convert indices to vectors

Syntax

ind2vec (ind)
ind2vec (ind,N)

Description

ind2vec and vec2ind allow indices to be represented either by themselves, or as vectors containing a 1 in the row of the index they represent.
ind2vec (ind) takes one argument,
ind \quad Row vector of indices
and returns a sparse matrix of vectors, with one 1 in each column, as indicated by ind.
ind2vec (ind, N) returns an N -by-M matrix, where N can be equal to or greater than the maximum index.

Examples

Here four indices are defined and converted to vector representation.

```
ind = [lllll
vec = ind2vec(ind)
vec =
\begin{tabular}{ll}
\((1,1)\) & 1 \\
\((3,2)\) & 1 \\
\((2,3)\) & 1 \\
\((3,4)\) & 1
\end{tabular}
```

Here a vector with all zeros in the last row is converted to indices and back, while preserving the number of rows.

```
vec = [0 0 1 0; 1 0 0 0; 0 1 0 0]'
vec =
\begin{tabular}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{tabular}
[ind,n] = vec2ind(vec)
ind =
    3 1 2
n =
    4
vec2 = full(ind2vec(ind,n))
vec2 =
    0 1 0
    0 0 1
    1 0 0
    0 0 0
```


See Also

ind2sub | sub2ind | vec2ind

Introduced before R2006a

init

Initialize neural network

Syntax

```
net = init(net)
```


To Get Help

Type help network/init.

Description

net $=$ init (net) returns neural network net with weight and bias values updated according to the network initialization function, indicated by net. initFcn, and the parameter values, indicated by net. initParam.

Examples

Here a perceptron is created, and then configured so that its input, output, weight, and bias dimensions match the input and target data.

```
x = [0 1 1 0 1; 0 0 1 1];
t = [0 0 0 1];
net = perceptron;
net = configure(net,x,t);
net.iw{1,1}
net.b{1}
```

Training the perceptron alters its weight and bias values.

```
net = train(net,x,t);
net.iw{1,1}
net.b{1}
```

init reinitializes those weight and bias values.

```
net = init(net);
net.iw{1,1}
net.b{1}
```

The weights and biases are zeros again, which are the initial values used by perceptron networks.

Algorithms

init calls net.initFen to initialize the weight and bias values according to the parameter values net.initParam.

Typically, net.initFcn is set to 'initlay', which initializes each layer's weights and biases according to its net.layers\{i\}.initFcn.

Backpropagation networks have net.layers\{i\}.initFen set to 'initnw', which calculates the weight and bias values for layer i using the Nguyen-Widrow initialization method.

Other networks have net.layers\{i\}.initFcn set to 'initwb', which initializes each weight and bias with its own initialization function. The most common weight and bias initialization function is rands, which generates random values between -1 and 1 .

See Also

adapt | initlay | initnw | initwb | rands | revert | sim | train

Introduced before R2006a

initcon

Conscience bias initialization function

Syntax

```
initcon (S,PR)
```


Description

initcon is a bias initialization function that initializes biases for learning with the learncon learning function.
initcon (S, PR) takes two arguments,

S	Number of rows (neurons)
$P R$	R-by-2 matrix of $R=[\operatorname{Pmin} \operatorname{Pmax}]\left(\right.$ default $\left.=\left[\begin{array}{ll}1 & 1\end{array}\right]\right)$

and returns an S-by-1 bias vector.
Note that for biases, R is always 1 . initcon could also be used to initialize weights, but it is not recommended for that purpose.

Examples

Here initial bias values are calculated for a five-neuron layer.
b = initcon(5)

Network Use

You can create a standard network that uses initcon to initialize weights by calling competlayer.

To prepare the bias of layer i of a custom network to initialize with initcon,

```
1 Set net.initFcn to 'initlay'.(net.initParam automatically becomes initlay's default parameters.)
```

2 Set net.layers\{i\}.initFcn to 'initwb'.
3 Set net.biases\{i\}.initFcn to 'initcon'.
To initialize the network, call init.

Algorithms

learncon updates biases so that each bias value b(i) is a function of the average output c (i) of the neuron i associated with the bias.
initcon gets initial bias values by assuming that each neuron has responded to equal numbers of vectors in the past.

See Also
competlayer | init | initlay | initwb | learncon
Introduced before R2006a

initlay

Layer-by-layer network initialization function

Syntax

```
net = initlay(net)
info = initlay('code')
```


Description

initlay is a network initialization function that initializes each layer i according to its own initialization function net.layers\{i\}.initFcn.

```
net = initlay(net) takes
```

net \quad Neural network
and returns the network with each layer updated.
info = initlay('code') returns useful information for each supported code string:

'pnames'	Names of initialization parameters
'pdefaults'	Default initialization parameters

initlay does not have any initialization parameters.

Network Use

You can create a standard network that uses initlay by calling feedforwardnet, cascadeforwardnet, and many other network functions.

To prepare a custom network to be initialized with initlay,
1 Set net.initFen to 'initlay'. This sets net.initParam to the empty matrix [], because initlay has no initialization parameters.

2 Set each net.layers\{i\}.initFcn to a layer initialization function. (Examples of such functions are initwb and initnw.)

To initialize the network, call init.

Algorithms

The weights and biases of each layer i are initialized according to net.layers\{i\}.initFcn.

See Also

cascadeforwardnet | feedforwardnet | init | initnw | initwb

Introduced before R2006a

initlvq

LVQ weight initialization function

Syntax

```
initlvq('configure',x)
initlvq('configure',net,'IW',i,j,settings)
initlvq('configure',net,'LW',i,j,settings)
initlvq('configure',net,'b',i,)
```


Description

initlvq('configure',x) takes input data x and returns initialization settings for an LVQ weights associated with that input.
initlvq('configure', net,'IW',i,j,settings) takes a network, and indices indicating an input weight to layer i from input j, and that weights settings, and returns new weight values.
initlvq('configure',net,'LW',i,j,settings) takes a network, and indices indicating a layer weight to layer i from layer j, and that weights settings, and returns new weight values.
initlvq('configure',net,'b',i,) takes a network, and an index indicating a bias for layer i, and returns new bias values.

See Also

init | lvqnet

Introduced in R2010b

initnw

Nguyen-Widrow layer initialization function

Syntax

```
net = initnw(net,i)
```


Description

initnw is a layer initialization function that initializes a layer's weights and biases according to the Nguyen-Widrow initialization algorithm. This algorithm chooses values in order to distribute the active region of each neuron in the layer approximately evenly across the layer's input space. The values contain a degree of randomness, so they are not the same each time this function is called.
initnw requires that the layer it initializes have a transfer function with a finite active input range. This includes transfer functions such as tansig and satlin, but not purelin, whose active input range is the infinite interval [-inf, inf]. Transfer functions, such as tansig, will return their active input range as follows:

```
activeInputRange = tansig('active')
activeInputRange =
    -2 2
net = initnw(net,i) takes two arguments,
```

net	Neural network
i	Index of a layer

and returns the network with layer i's weights and biases updated.
There is a random element to Nguyen-Widrow initialization. Unless the default random generator is set to the same seed before each call to initnw, it will generate different weight and bias values each time.

Network Use

You can create a standard network that uses initnw by calling feedforwardnet or cascadeforwardnet.

To prepare a custom network to be initialized with initnw,
1 Set net.initFen to 'initlay'. This sets net.initParam to the empty matrix [], because initlay has no initialization parameters.

2 Set net.layers\{i\}.initFcn to 'initnw'.
To initialize the network, call init.

Algorithms

The Nguyen-Widrow method generates initial weight and bias values for a layer so that the active regions of the layer's neurons are distributed approximately evenly over the input space.

Advantages over purely random weights and biases are

- Few neurons are wasted (because all the neurons are in the input space).
- Training works faster (because each area of the input space has neurons). The Nguyen-Widrow method can only be applied to layers
- With a bias
- With weights whose weightFen is dotprod
- With netInputFen set to netsum
- With transferFcn whose active region is finite

If these conditions are not met, then initnw uses rands to initialize the layer's weights and biases.

```
See Also
cascadeforwardnet | feedforwardnet | init | initlay | initwb
```

Introduced before R2006a

initwb

By weight and bias layer initialization function

Syntax

```
initwb(net,i)
```


Description

initwb is a layer initialization function that initializes a layer's weights and biases according to their own initialization functions.
initwb (net, i) takes two arguments,

net	Neural network
i	Index of a layer

and returns the network with layer i's weights and biases updated.

Network Use

You can create a standard network that uses initwb by calling perceptron or linearlayer.

To prepare a custom network to be initialized with initwb,
1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty matrix [], because initlay has no initialization parameters.
2 Set net.layers\{i\}.initFcn to 'initwb'.
3 Set each net.inputWeights $\{i, j\}$.initFcn to a weight initialization function. Set each net.layerWeights $\{i, j\}$.initFcn to a weight initialization function. Set each net.biases\{i\}.initFcn to a bias initialization function. (Examples of such functions are rands and midpoint.)

To initialize the network, call init.

Algorithms

Each weight (bias) in layer i is set to new values calculated according to its weight (bias) initialization function.

See Also

init | initlay | initnw | linearlayer | perceptron

Introduced before R2006a

initzero

Zero weight and bias initialization function

Syntax

```
W = initzero(S,PR)
b = initzero(S,[1 1])
```


Description

$\mathrm{W}=$ initzero (S, PR) takes two arguments,

S	Number of rows (neurons)
$P R$	$R-$ by-2 matrix of input value ranges $=[$ Pmin Pmax $]$

and returns an S-by-R weight matrix of zeros.
$\mathrm{b}=$ initzero $\left(\mathrm{S},\left[\begin{array}{ll}1 & 1\end{array}\right]\right)$ returns an S -by-1 bias vector of zeros.

Examples

Here initial weights and biases are calculated for a layer with two inputs ranging over [0 1] and [-2 2 2$]$ and four neurons.

```
W = initzero(5,[0 1; -2 2])
b = initzero(5,[1 1])
```


Network Use

You can create a standard network that uses initzero to initialize its weights by calling newp or newlin.

To prepare the weights and the bias of layer i of a custom network to be initialized with midpoint,

1 Set net.initFcn to 'initlay'.(net.initParam automatically becomes initlay's default parameters.)

2 Set net.layers\{i\}.initFcn to 'initwb'.
3 Set each net.inputWeights\{i,j\}.initFcn to 'initzero'.
4 Set each net.layerWeights\{i,j\}.initFcn to 'initzero'.
5 Set each net.biases\{i\}.initFcn to 'initzero'.
To initialize the network, call init.
See help newp and help newlin for initialization examples.

See Also

init | initlay | initwb

Introduced before R2006a

isconfigured

Indicate if network inputs and outputs are configured

Syntax

[flag,inputflags,outputflags] = isconfigured(net)

Description

[flag,inputflags,outputflags] = isconfigured(net) takes a neural network and returns three values,

flag	True if all network inputs and outputs are configured (have non-zero sizes)
inputflags	Vector of true/false values for each configured/unconfigured input
outputflags	Vector of true/false values for each configured/unconfigured output

Examples

Here are the flags returned for a new network before and after being configured:

```
net = feedforwardnet;
[flag,inputFlags,outputFlags] = isconfigured(net)
[x,t] = simplefit_dataset;
net = configure(nēt,x,t);
[flag,inputFlags,outputFlags] = isconfigured(net)
```


See Also

configure | unconfigure

Introduced in R2010b

layrecnet

Layer recurrent neural network

Syntax

```
layrecnet(layerDelays,hiddenSizes,trainFcn)
```


Description

Layer recurrent neural networks are similar to feedforward networks, except that each layer has a recurrent connection with a tap delay associated with it. This allows the network to have an infinite dynamic response to time series input data. This network is similar to the time delay (timedelaynet) and distributed delay (distdelaynet) neural networks, which have finite input responses.
layrecnet(layerDelays,hiddenSizes,trainFcn) takes these arguments,

layerDelays	Row vector of increasing 0 or positive delays $($ default $=1: 2)$
hiddenSizes	Row vector of one or more hidden layer sizes $($ default $=10)$
trainFcn	Training function (default = 'trainlm')

and returns a layer recurrent neural network.

Examples

Recurrent Neural Network

Use a layer recurrent neural network to solve a simple time series problem.

```
[X,T] = simpleseries_dataset;
net = layrecnet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
```

```
Y = net(Xs,Xi,Ai);
perf = perform(net,Y,Ts)
perf =
6.1239e-11
```


See Also

distdelaynet | narnet | narxnet | preparets | removedelay | timedelaynet

Introduced in R2010b

learncon

Conscience bias learning function

Syntax

$[d B, L S]=$ learncon (B, P, Z, N, A, T, E, gW, gA, D, LP, LS $)$
info = learncon('code')

Description

learncon is the conscience bias learning function used to increase the net input to neurons that have the lowest average output until each neuron responds approximately an equal percentage of the time.

$[\mathrm{dB}, \mathrm{LS}]=$ learncon $(\mathrm{B}, \mathrm{P}, \mathrm{Z}, \mathrm{N}, \mathrm{A}, \mathrm{T}, \mathrm{E}, \mathrm{gW}, \mathrm{gA}, \mathrm{D}, \mathrm{LP}, \mathrm{LS})$ takes several inputs,	
B	S-by-1 bias vector
P	l-by-Q ones vector
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
GW	S-by-R gradient with respect to performance
GA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[]$
LS	Learning state, initially should be $=[]$

and returns

$d B$	S-by-1 weight (or bias) change matrix
LS	New learning state

Learning occurs according to learncon's learning parameter, shown here with its default value.

LP.lr - 0.001	Learning rate

info = learncon('code') returns useful information for each supported code string:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Neural Network Toolbox 2.0 compatibility: The LP. lr described above equals 1 minus the bias time constant used by trainc in the Neural Network Toolbox 2.0 software.

Examples

Here you define a random output A and bias vector w for a layer with three neurons. You also define the learning rate LR.

```
a = rand (3,1);
b = rand (3,1);
lp.lr = 0.5;
```

Because learncon only needs these values to calculate a bias change (see "Algorithm" below), use them to do so.

```
dW = learncon(b,[],[],[],a,[],[],[],[],[],lp,[])
```


Network Use

To prepare the bias of layer i of a custom network to learn with learncon,
1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)

3 Set net.inputWeights\{i\}.learnFcn to 'learncon'
4 Set each net. layerWeights $\{i, j\}$.learnFcn to 'learncon'. .(Each weight learning parameter property is automatically set to learncon's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Calltrain (or adapt).

Algorithms

learncon calculates the bias change db for a given neuron by first updating each neuron's conscience, i.e., the running average of its output:

```
c = (1-lr)*c + lr*a
```

The conscience is then used to compute a bias for the neuron that is greatest for smaller conscience values.

```
b = exp(1-log(c)) - b
```

(learncon recovers C from the bias values each time it is called.)

See Also
adapt | learnk | learnos | train
Introduced before R2006a

learngd

Gradient descent weight and bias learning function

Syntax

```
[dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learngd('code')
```


Description

learngd is the gradient descent weight and bias learning function.

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones (1,2))
Z	S-by-Q output gradient with respect to performance $\mathrm{x} Q$ weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP = []
LS	Learning state, initially should be []

and returns

$\mathrm{d} W$	S-by-R weight (or bias) change matrix

LS	New learning state

Learning occurs according to learngd's learning parameter, shown here with its default value.

LP.lr -0.01	Learning rate

info = learngd('code') returns useful information for each supported code string:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random gradient gW for a weight going to a layer with three neurons from an input with two elements. Also define a learning rate of 0.5 .

```
gW = rand (3,2);
lp.lr = 0.5;
```

Because learngd only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learngd([],[],[],[],[],[],[],gW,[],[],lp,[])
```


Network Use

You can create a standard network that uses learngd with newff, newcf, or newelm. To prepare the weights and the bias of layer i of a custom network to adapt with learngd,

1 Set net.adaptFen to 'trains'. net.adaptParam automatically becomes trains's default parameters.
2 Set each net.inputWeights\{i,j\}.learnFcn to 'learngd'. Set each net.layerWeights $\{i, j\}$.learnFen to 'learngd'. Set net.biases\{i\}.learnFcn to 'learngd'. Each weight and bias learning parameter property is automatically set to learngd's default parameters.

To allow the network to adapt,
1 Set net.adaptParam properties to desired values.
2 Call adapt with the network.
See help newff or help newcf for examples.

Algorithms

learngd calculates the weight change $d W$ for a given neuron from the neuron's input P and error E , and the weight (or bias) learning rate LR, according to the gradient descent $d w=l r * g W$.

See Also

adapt | learngdm | train

Introduced before R2006a

learngdm

Gradient descent with momentum weight and bias learning function

Syntax

```
[dW,LS] = learngdm(W,P,Z,N,A,T,E,gW, GA,D,LP,LS)
info = learngdm('code')
```


Description

learngdm is the gradient descent with momentum weight and bias learning function.

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones (1, Q))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP = []
LS	Learning state, initially should be = []

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learngdm's learning parameters, shown here with their default values.

LP.lr -0.01	Learning rate
LP.mc -0.9	Momentum constant

info = learngdm('code') returns useful information for each code string:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random gradient G for a weight going to a layer with three neurons from an input with two elements. Also define a learning rate of 0.5 and momentum constant of 0.8 :

```
gW = rand (3,2);
lp.lr = 0.5;
lp.mc = 0.8;
```

Because learngdm only needs these values to calculate a weight change (see "Algorithm" below), use them to do so. Use the default initial learning state.

```
ls = [];
[dW,ls] = learngdm([],[],[],[],[],[],[],gW,[],[],lp,ls)
```

learngdm returns the weight change and a new learning state.

Network Use

You can create a standard network that uses learngdm with newff, newcf, or newelm.
To prepare the weights and the bias of layer i of a custom network to adapt with learngdm,

1 Set net.adaptFcn to 'trains'. net.adaptParam automatically becomes trains's default parameters.

2 Set each net.inputWeights\{i,j\}.learnFcn to 'learngdm'. Set each net.layerWeights\{i,j\}.learnFcn to 'learngdm'. Set net.biases\{i\}.learnFcn to 'learngdm'. Each weight and bias learning parameter property is automatically set to learngdm's default parameters.

To allow the network to adapt,
1 Set net.adaptParam properties to desired values.
2 Call adapt with the network.
See help newff or help newcf for examples.

Algorithms

learngdm calculates the weight change $d W$ for a given neuron from the neuron's input P and error E , the weight (or bias) W , learning rate LR, and momentum constant MC, according to gradient descent with momentum:

```
dW = mc*dWprev + (1-mc)*lr*gW
```

The previous weight change dWprev is stored and read from the learning state LS.

See Also

adapt | learngd | train

Introduced before R2006a

learnh

Hebb weight learning rule

Syntax

```
[dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnh('code')
```


Description

learnh is the Hebb weight learning function.

[dW,LS] = learnh ($\mathrm{W}, \mathrm{P}, \mathrm{Z}, \mathrm{N}, \mathrm{A}, \mathrm{T}, \mathrm{E}, \mathrm{gW}, \mathrm{gA}, \mathrm{D}, \mathrm{LP}, \mathrm{LS}$) takes several inputs,
W
S-by-R weight matrix (or S-by-1 bias vector)
P
Z
R-by-Q input vectors (or ones $(1, \mathrm{Q})$)
N
A
S-by-Q weighted input vectors
T
E
SW
S-by-Q net input vectors
GA
D
S-by-Q layer target vectors
LP
LS

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnh's learning parameter, shown here with its default value.

LP.lr - 0.01	Learning rate

info = learnh ('code') returns useful information for each code string:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P and output A for a layer with a two-element input and three neurons. Also define the learning rate LR.

```
p = rand (2,1);
a = rand(3,1);
lp.lr = 0.5;
```

Because learnh only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnh([],p,[],[],a,[],[],[],[],[],lp,[])
```


Network Use

To prepare the weights and the bias of layer i of a custom network to learn with learnh,
1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)

3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnh'.
4 Set each net.layerWeights $\{i, j\} . l e a r n F c n$ to 'learnh'. (Each weight learning parameter property is automatically set to learnh's default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net. adaptParam) properties to desired values.
2 Calltrain (adapt).

Algorithms

learnh calculates the weight change $d W$ for a given neuron from the neuron's input P, output A, and learning rate LR according to the Hebb learning rule:

```
dw = lr*a*p'
```


References

Hebb, D.O., The Organization of Behavior, New York, Wiley, 1949

See Also
adapt | learnhd | train

Introduced before R2006a

learnhd

Hebb with decay weight learning rule

Syntax

```
[dW,LS] = learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnhd('code')
```


Description

learnhd is the Hebb weight learning function.

[dW, LS] = learnhd (W, P, Z,N,A,T,E, gW, gA, D, LP, LS) takes several inputs,
W S-by-R weight matrix (or S-by-1 bias vector) P R-by-Q input vectors (or ones $(1, Q)$) Z S-by-Q weighted input vectors N S-by-Q net input vectors A S-by-Q output vectors T S-by-Q layer target vectors E S-by-Q layer error vectors GW S-by-R gradient with respect to performance GA S-by-Q output gradient with respect to performance D S-by-S neuron distances LP Learning parameters, none, LP $=[$] LS Learning state, initially should be $=[]$

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnhd's learning parameters, shown here with default values.

LP.dr -0.01	Decay rate
LP.lr -0.1	Learning rate

info = learnhd('code') returns useful information for each code string:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, and weights W for a layer with a twoelement input and three neurons. Also define the decay and learning rates.

```
p = rand(2,1);
a = rand (3,1);
w = rand(3,2);
lp.dr = 0.05;
lp.lr = 0.5;
```

Because learnhd only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnhd(w,p,[],[],a,[],[],[],[],[],lp,[])
```


Network Use

To prepare the weights and the bias of layer i of a custom network to learn with learnhd,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)
2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)

3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnhd'.

4 Set each net.layerWeights $\{i, j\} . l e a r n F c n$ to 'learnhd'. (Each weight learning parameter property is automatically set to learnhd's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Calltrain (adapt).

Algorithms

learnhd calculates the weight change $d W$ for a given neuron from the neuron's input P, output A, decay rate DR, and learning rate LR according to the Hebb with decay learning rule:

```
dw = lr*a*p' - dr*w
```


See Also

adapt | learnh | train

Introduced before R2006a

learnis

Instar weight learning function

Syntax

```
[dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnis('code')
```


Description

learnis is the instar weight learning function.

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones (1,2))
Z	S-by-2 weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP = []
LS	Learning state, initially should be = []

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnis's learning parameter, shown here with its default value.

$L P . l r-0.01$	Learning rate

info = learnis('code') returns useful information for each code string:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, and weight matrix W for a layer with a twoelement input and three neurons. Also define the learning rate LR.

```
p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;
```

Because learnis only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnis(w,p,[],[],a,[],[],[],[],[],lp,[])
```


Network Use

To prepare the weights and the bias of layer i of a custom network so that it can learn with learnis,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)
2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)

3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnis'.
4 Set each net.layerWeights\{i,j\}.learnFcn to 'learnis'. (Each weight learning parameter property is automatically set to learnis's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (net.adaptParam) properties to desired values.
2 Calltrain (adapt).

Algorithms

learnis calculates the weight change $d W$ for a given neuron from the neuron's input P, output A, and learning rate LR according to the instar learning rule:
$d w=l r^{*} a^{*}\left(p^{\prime}-w\right)$

References

Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland, Reidel Press, 1982

See Also

adapt | learnk | learnos | train

Introduced before R2006a

learnk

Kohonen weight learning function

Syntax

```
[dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnk('code')
```


Description

learnk is the Kohonen weight learning function.

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones ($1, \mathrm{Q}$))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP = []
LS	Learning state, initially should be = []

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnk's learning parameter, shown here with its default value.

LP.lr - 0.01	Learning rate

info = learnk('code') returns useful information for each code string:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, and weight matrix W for a layer with a twoelement input and three neurons. Also define the learning rate LR.

```
p = rand (2,1);
a = rand (3,1);
w = rand(3,2);
lp.lr = 0.5;
```

Because learnk only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnk(w,p,[],[],a,[],[],[],[],[],lp,[])
```


Network Use

To prepare the weights of layer i of a custom network to learn with learnk,
1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)
2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)

3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnk'.
4 Set each net.layerWeights $\{i, j\} . l e a r n F c n$ to 'learnk'. (Each weight learning parameter property is automatically set to learnk's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Calltrain (or adapt).

Algorithms

learnk calculates the weight change $d W$ for a given neuron from the neuron's input P, output A, and learning rate LR according to the Kohonen learning rule:
$d w=l r^{*}\left(p^{\prime}-w\right)$, if a $\sim=0 ;=0$, otherwise

References

Kohonen, T., Self-Organizing and Associative Memory, New York, Springer-Verlag, 1984

See Also
adapt | learnis | learnos | train
Introduced before R2006a

learnlv1

LVQ1 weight learning function

Syntax

```
[dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnlv1('code')
```


Description

learnlv1 is the LVQ1 weight learning function.

[dW, LS] $=$ learnlv1 ($\mathrm{W}, \mathrm{P}, \mathrm{Z}, \mathrm{N}, \mathrm{A}, \mathrm{T}, \mathrm{E}, \mathrm{gW}, \mathrm{gA}, \mathrm{D}, \mathrm{LP}, \mathrm{LS}$) takes several inputs,	
W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones $(1, \mathrm{Q})$)
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
GW	S-by-R gradient with respect to performance
GA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[]$
LS	Learning state, initially should be $=[]$

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnlv1's learning parameter, shown here with its default value.

LP.lr -0.01	Learning rate

info = learnlv1 ('code') returns useful information for each code string:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, weight matrix W, and output gradient $g A$ for a layer with a two-element input and three neurons. Also define the learning rate LR.

```
p = rand(2,1);
w = rand(3,2);
a = compet(negdist(w,p));
gA = [-1;1; 1];
lp.lr = 0.5;
```

Because learnlv1 only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnlv1(w,p,[],[],a,[],[],[],gA,[],lp,[])
```


Network Use

You can create a standard network that uses learnlv1 with lvqnet. To prepare the weights of layer i of a custom network to learn with learnlv1,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)
2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)

3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnlv1'.

4 Set each net.layerWeights $\{i, j\}$.learnFcn to 'learnlv1'. (Each weight learning parameter property is automatically set to learnlv1's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net. adaptParam) properties as desired.
2 Calltrain (or adapt).

Algorithms

learnlv1 calculates the weight change $d W$ for a given neuron from the neuron's input P, output A, output gradient gA, and learning rate LR, according to the LVQ1 rule, given i, the index of the neuron whose output a (i) is 1 :

```
\(d w(i,:)=+l r^{*}(p-w(i,:))\) if \(g A(i)=0 ;=-l r^{*}(p-w(i,:))\) if \(g A(i)=-1\)
```


See Also

adapt | learnlv2 | train

Introduced before R2006a

learnlv2

LVQ2.1 weight learning function

Syntax

```
[dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnlv2('code')
```


Description

learnlv2 is the LVQ2 weight learning function.

$[$ dW, LS $]=$ learnlv2 (W, P, Z, N,A,T,E, gW, gA, D, LP, LS $)$ takes several inputs,	
W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones $(1, Q)$)
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
GW	S-by-R weight gradient with respect to performance
GA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[]$
LS	Learning state, initially should be $=[]$

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnlv2's learning parameter, shown here with its default value.

LP.lr -0.01	Learning rate
LP. window -0.25	Window size (0 to 1, typically 0.2 to 0.3)

info = learnlv2('code') returns useful information for each code string:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a sample input P, output A, weight matrix W, and output gradient $g A$ for a layer with a two-element input and three neurons. Also define the learning rate LR.

```
p = rand(2,1);
w = rand(3,2);
n = negdist(w,p);
a = compet(n);
gA = [-1;1; 1];
lp.lr = 0.5;
```

Because learnlv2 only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnlv2(w,p,[],n,a,[],[],[],gA,[],lp,[])
```


Network Use

You can create a standard network that uses learnlv2 with lvqnet.
To prepare the weights of layer i of a custom network to learn with learnlv2,
1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)

3 Set each net.inputWeights $\{i, j\} . l e a r n F c n$ to 'learnlv2'.
4 Set each net. layerWeights $\{i, j\}$.learnFcn to 'learnlv2'. (Each weight learning parameter property is automatically set to learnlv2's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Calltrain (or adapt).

Algorithms

learnlv2 implements Learning Vector Quantization 2.1, which works as follows:
For each presentation, if the winning neuron i should not have won, and the runnerup j should have, and the distance di between the winning neuron and the input p is roughly equal to the distance $d j$ from the runnerup neuron to the input p according to the given window,

```
min(di/dj, dj/di) > (1-window)/(1+window)
```

then move the winning neuron i weights away from the input vector, and move the runnerup neuron j weights toward the input according to

```
dw(i,:) = - lp.lr*(p'-w(i,:))
dw(j,:) = + lp.lr*(p'-w(j,:))
```


See Also

adapt | learnlv1 | train

Introduced before R2006a

learnos

Outstar weight learning function

Syntax

```
[dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnos('code')
```


Description

learnos is the outstar weight learning function.

[dW, LS] = learnos ($\mathrm{W}, \mathrm{P}, \mathrm{Z}, \mathrm{N}, \mathrm{A}, \mathrm{T}, \mathrm{E}, \mathrm{gW}, \mathrm{gA}, \mathrm{D}, \mathrm{LP}, \mathrm{LS}$) takes several inputs,	
W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones $(1, \mathrm{Q})$)
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
GW	S-by-R weight gradient with respect to performance
GA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[]$
LS	Learning state, initially should be $=[]$

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnos's learning parameter, shown here with its default value.

$L P . l r-0.01$	Learning rate

info = learnos('code') returns useful information for each code string:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, and weight matrix W for a layer with a twoelement input and three neurons. Also define the learning rate LR.

```
p = rand (2,1);
a = rand (3,1);
w = rand(3,2);
lp.lr = 0.5;
```

Because learnos only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnos(w,p,[],[],a,[],[],[],[],[],lp,[])
```


Network Use

To prepare the weights and the bias of layer i of a custom network to learn with learnos,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)
2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)

3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnos'.
4 Set each net.layerWeights\{i,j\}.learnFcn to 'learnos'. (Each weight learning parameter property is automatically set to learnos's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Calltrain (adapt).

Algorithms

learnos calculates the weight change $d W$ for a given neuron from the neuron's input P, output A, and learning rate LR according to the outstar learning rule:
$d w=l r^{*}(a-w) *{ }^{\prime}$

References

Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland, Reidel Press, 1982

See Also

adapt | learnis | learnk | train

Introduced before R2006a

learnp

Perceptron weight and bias learning function

Syntax

```
[dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnp('code')
```


Description

learnp is the perceptron weight/bias learning function.

$[\mathrm{dW}, \mathrm{LS}]=$ learnp ($\mathrm{W}, \mathrm{P}, \mathrm{Z}, \mathrm{N}, \mathrm{A}, \mathrm{T}, \mathrm{E}, \mathrm{gW}, \mathrm{gA}, \mathrm{D}, \mathrm{LP}, \mathrm{LS}$) takes several inputs,
W
S-by-R weight matrix (or b, and S-by-1 bias vector)
P
Z
R-by-Q input vectors (or ones $(1, \mathrm{Q})$)
N
A
S-by-Q weighted input vectors
T
E
SW
S-by-Q net input vectors
SA
D
S-by-Q output vectors layer target vectors
LP
SS

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

info = learnp('code') returns useful information for each code string:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P and error E for a layer with a two-element input and three neurons.

```
p = rand (2,1);
e = rand (3,1);
```

Because learnp only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnp([],p,[],[],[],[],e,[],[],[],[],[])
```


Network Use

You can create a standard network that uses learnp with newp.
To prepare the weights and the bias of layer i of a custom network to learn with learnp,
1 Set net.trainFcn to 'trainb'. (net.trainParam automatically becomes trainb's default parameters.)
2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)

3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnp'.
4 Set each net.layerWeights\{i,j\}.learnFcn to 'learnp'.
5 Set net.biases\{i\}.learnFcn to 'learnp'. (Each weight and bias learning parameter property automatically becomes the empty matrix, because learnp has no learning parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net. adaptParam) properties to desired values.
2 Calltrain (adapt).
See help newp for adaption and training examples.

Algorithms

learnp calculates the weight change $d W$ for a given neuron from the neuron's input P and error E according to the perceptron learning rule:

```
dw = 0, if e = 0
    = p', if e = 1
    = -p', if e = -1
```

This can be summarized as

```
dw = e*p'
```


References

Rosenblatt, F., Principles of Neurodynamics, Washington, D.C., Spartan Press, 1961

See Also

adapt | learnpn | train

Introduced before R2006a

learnpn

Normalized perceptron weight and bias learning function

Syntax

```
[dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnpn('code')
```


Description

learnpn is a weight and bias learning function. It can result in faster learning than learnp when input vectors have widely varying magnitudes.

$[\mathrm{dW}, \mathrm{LS}]=$ learnpn (W, P, Z, N, A, T, E, gW, gA, D, LP, LS $)$ takes several inputs,	
W	S-by-R weight matrix (or S-by- 1 bias vector)
P	R-by-Q input vectors (or ones (1, Q))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
GW	S-by-R weight gradient with respect to performance
GA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[]$
LS	Learning state, initially should be $=[]$

and returns

dW	S-by-R weight (or bias) change matrix

LS	New learning state
info $=$ learnpn (' code')	returns useful information for each code string:
'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P and error E for a layer with a two-element input and three neurons.

```
p = rand(2,1);
e = rand(3,1);
```

Because learnpn only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnpn([],p,[],[],[],[],e,[],[],[],[],[])
```


Network Use

You can create a standard network that uses learnpn with newp.
To prepare the weights and the bias of layer i of a custom network to learn with learnpn,

1 Set net.trainFcn to 'trainb'. (net.trainParam automatically becomes trainb's default parameters.)
2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)

3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnpn'.
4 Set each net.layerWeights\{i,j\}.learnFcn to 'learnpn'.
5 Set net.biases\{i\}.learnFcn to 'learnpn'. (Each weight and bias learning parameter property automatically becomes the empty matrix, because learnpn has no learning parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Calltrain (adapt).
See help newp for adaption and training examples.

Limitations

Perceptrons do have one real limitation. The set of input vectors must be linearly separable if a solution is to be found. That is, if the input vectors with targets of 1 cannot be separated by a line or hyperplane from the input vectors associated with values of 0 , the perceptron will never be able to classify them correctly.

Algorithms

learnpn calculates the weight change $d W$ for a given neuron from the neuron's input P and error E according to the normalized perceptron learning rule:

```
pn = p / sqrt(1 + p(1)^2 + p(2)^2) + ... + p(R)^2)
dw = 0, if e = 0
    = pn', if e = 1
    = -pn', if e = -1
```

The expression for $d W$ can be summarized as

```
dw = e*pn'
```


See Also

adapt | learnp | train

Introduced before R2006a

learnsom

Self-organizing map weight learning function

Syntax

```
[dW,LS] = learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnsom('code')
```


Description

learnsom is the self-organizing map weight learning function.

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones (1, Q))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R weight gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP = []
LS	Learning state, initially should be = []

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnsom's learning parameters, shown here with their default values.

LP.order_lr	0.9	Ordering phase learning rate
LP.order_steps	1000	Ordering phase steps
LP.tune_lr	0.02	Tuning phase learning rate
LP.tune_nd	1	Tuning phase neighborhood distance

info = learnsom('code') returns useful information for each code string:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, and weight matrix W for a layer with a twoelement input and six neurons. You also calculate positions and distances for the neurons, which are arranged in a 2 -by- 3 hexagonal pattern. Then you define the four learning parameters.

```
p = rand (2,1);
a = rand (6,1);
w = rand(6,2);
pos = hextop (2,3);
d = linkdist(pos);
lp.order_lr = 0.9;
lp.order_steps = 1000;
lp.tune_lr = 0.02;
lp.tune_nd = 1;
```

Because learnsom only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
ls = [];
[dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls)
```


Network Use

You can create a standard network that uses learnsom with newsom.
1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)
2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)
3 Set each net.inputWeights $\{i, j\}$.learnFcn to 'learnsom'.
4 Set each net.layerWeights $\{i, j\} . l e a r n F c n$ to 'learnsom'.
5 Set net.biases\{i\}.learnFcn to 'learnsom'. (Each weight learning parameter property is automatically set to learnsom's default parameters.)

To train the network (or enable it to adapt):
1 Set net.trainParam (or net. adaptParam) properties to desired values.
2 Calltrain (adapt).

Algorithms

learnsom calculates the weight change $d W$ for a given neuron from the neuron's input P, activation A2, and learning rate LR:

```
dw = lr*a2*(p'-w)
```

where the activation $A 2$ is found from the layer output A, neuron distances D, and the current neighborhood size ND:

```
a2(i,q) = 1, if a(i,q) = 1
    = 0.5, if a(j,q) = 1 and D(i,j) <= nd
    = 0, otherwise
```

The learning rate LR and neighborhood size NS are altered through two phases: an ordering phase and a tuning phase.

The ordering phases lasts as many steps as LP.order_steps. During this phase LR is adjusted from LP. order_lr down to LP. tune_lr, and ND is adjusted from the maximum neuron distance down to 1 . It is during this phase that neuron weights are
expected to order themselves in the input space consistent with the associated neuron positions.

During the tuning phase LR decreases slowly from LP.tune_lr, and ND is always set to LP.tune_nd. During this phase the weights are expected to spread out relatively evenly over the input space while retaining their topological order, determined during the ordering phase.

See Also

adapt | train

Introduced before R2006a

learnsomb

Batch self-organizing map weight learning function

Syntax

```
[dW,LS] = learnsomb(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnsomb('code')
```


Description

learnsomb is the batch self-organizing map weight learning function.

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones ($1, \mathrm{Q}$))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP = []
LS	Learning state, initially should be = []

and returns the following:

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnsomb's learning parameter, shown here with its default value:

LP.init_neighborhood	3	Initial neighborhood size
LP.steps	100	Ordering phase steps

info = learnsomb('code') returns useful information for each code string:

'pnames'	Returns names of learning parameters.
'pdefaults'	Returns default learning parameters.
'needg'	Returns 1 if this function uses gW or gA.

Examples

This example defines a random input P, output A, and weight matrix W for a layer with a 2 -element input and 6 neurons. This example also calculates the positions and distances for the neurons, which appear in a 2 -by- 3 hexagonal pattern.

```
p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop (2,3);
d = linkdist(pos);
lp = learnsomb('pdefaults');
```

Because learnsom only needs these values to calculate a weight change (see Algorithm).

```
ls = [];
[dW,ls] = learnsomb(w,p,[],[],a,[],[],[],[],d,lp,ls)
```


Network Use

You can create a standard network that uses learnsomb with selforgmap. To prepare the weights of layer i of a custom network to learn with learnsomb:

1 Set NET.trainFen to 'trainr'. (NET.trainParam automatically becomes trainr's default parameters.)
2 Set NET. adaptFcn to 'trains'. (NET.adaptParam automatically becomes trains's default parameters.)

3 Set each NET.inputWeights $\{i, j\}$.learnFcn to 'learnsomb'.
4 Set each NET. layerWeights \{i,j\}.learnFcn to 'learnsomb'. (Each weight learning parameter property is automatically set to learnsomb's default parameters.)

To train the network (or enable it to adapt):
1 Set NET.trainParam (or NET. adaptParam) properties as desired.
2 Calltrain (or adapt).

Algorithms

learnsomb calculates the weight changes so that each neuron's new weight vector is the weighted average of the input vectors that the neuron and neurons in its neighborhood responded to with an output of 1 .

The ordering phase lasts as many steps as LP. steps.
During this phase, the neighborhood is gradually reduced from a maximum size of LP.init_neighborhood down to 1 , where it remains from then on.

See Also

adapt | selforgmap | train

Introduced in R2008a

learnwh

Widrow-Hoff weight/bias learning function

Syntax

```
[dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnwh('code')
```


Description

learnwh is the Widrow-Hoff weight/bias learning function, and is also known as the delta or least mean squared (LMS) rule.

$[\mathrm{dW}, \mathrm{LS}]=$ learnwh $(\mathrm{W}, \mathrm{P}, \mathrm{Z}, \mathrm{N}, \mathrm{A}, \mathrm{T}, \mathrm{E}, \mathrm{gW}, \mathrm{gA}, \mathrm{D}, \mathrm{LP}, \mathrm{LS})$ takes several inputs,	
W	S-by-R weight matrix (or b, and S-by-1 bias vector)
P	R-by-Q input vectors (or ones $(1, \mathrm{Q})$)
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
GW	S-by-R weight gradient with respect to performance
GA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[]$
LS	Learning state, initially should be $=[]$

and returns

dW	S-by-R weight (or bias) change matrix

LS	New learning state

Learning occurs according to the learnwh learning parameter, shown here with its default value.

LP.lr -	Learning rate
0.01	

info = learnwh ('code') returns useful information for each code string:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P and error E for a layer with a two-element input and three neurons. You also define the learning rate LR learning parameter.

```
p = rand(2,1);
e = rand(3,1);
lp.lr = 0.5;
```

Because learnwh needs only these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnwh([],p,[],[],[],[],e,[],[],[],lp,[])
```


Network Use

You can create a standard network that uses learnwh with linearlayer.
To prepare the weights and the bias of layer i of a custom network to learn with learnwh,

1 Set net.trainFcn to 'trainb'. net.trainParam automatically becomes trainb's default parameters.
2 Set net.adaptFen to 'trains'. net.adaptParam automatically becomes trains's default parameters.

3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnwh'.
4 Set each net. layerWeights $\{i, j\}$.learnFcn to 'learnwh'.
5 Set net.biases\{i\}.learnFcn to 'learnwh'. Each weight and bias learning parameter property is automatically set to the learnwh default parameters.

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Calltrain (or adapt).

Algorithms

learnwh calculates the weight change $d W$ for a given neuron from the neuron's input P and error E , and the weight (or bias) learning rate LR, according to the Widrow-Hoff learning rule:

```
dw = lr*e*pn'
```


References

Widrow, B., and M.E. Hoff, "Adaptive switching circuits," 1960 IRE WESCON Convention Record, New York IRE, pp. 96-104, 1960

Widrow, B., and S.D. Sterns, Adaptive Signal Processing, New York, Prentice-Hall, 1985

See Also

adapt | linearlayer | train

Introduced before R2006a

linearlayer

Linear layer

Syntax

linearlayer(inputDelays,widrowHoffLR)

Description

Linear layers are single layers of linear neurons. They may be static, with input delays of 0 , or dynamic, with input delays greater than 0 . They can be trained on simple linear time series problems, but often are used adaptively to continue learning while deployed so they can adjust to changes in the relationship between inputs and outputs while being used.

If a network is needed to solve a nonlinear time series relationship, then better networks to try include timedelaynet, narxnet, and narnet.
linearlayer(inputDelays,widrowHoffLR) takes these arguments,

inputDelays	Row vector of increasing 0 or positive delays $($ default $=1: 2)$
widrowHofflR	Widrow-Hoff learning rate $($ default $=0.01)$

and returns a linear layer.
If the learning rate is too small, learning will happen very slowly. However, a greater danger is that it may be too large and learning will become unstable resulting in large changes to weight vectors and errors increasing instead of decreasing. If a data set is available which characterizes the relationship the layer is to learn, the maximum stable learning rate can be calculated with maxlinlr.

Examples

Create and Train a Linear Layer

Here a linear layer is trained on a simple time series problem.

```
x = {0 0 -1 1 1 1 0 0 -1 1 1 0 0 0 1};
t = {0 -1 0 2 1 -1 0 1 0 1};
net = linearlayer(1:2,0.01);
[Xs,Xi,Ai,Ts] = preparets(net,x,t);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi);
perf = perform(net,Ts,Y)
```

perf =
0.2396

See Also

narnet | narxnet | preparets | removedelay | timedelaynet

Introduced in R2010b

linkdist

Link distance function

Syntax

```
d = linkdist(pos)
```


Description

linkdist is a layer distance function used to find the distances between the layer's neurons given their positions.
$\mathrm{d}=$ linkdist (pos) takes one argument,

pos	N-by-S matrix of neuron positions

and returns the S-by-S matrix of distances.

Examples

Here you define a random matrix of positions for 10 neurons arranged in threedimensional space and find their distances.

```
pos = rand(3,10);
D = linkdist(pos)
```


Network Use

You can create a standard network that uses linkdist as a distance function by calling selforgmap.

To change a network so that a layer's topology uses linkdist, set net.layers\{i\}.distanceFcn to 'linkdist'.

In either case, call sim to simulate the network with dist.

Algorithms

The link distance D between two position vectors Pi and Pj from a set of S vectors is

```
Dij = 0, if i == j
    = 1, if (sum((Pi-Pj).^2)).^0.5 is <= 1
    = 2, if k exists, Dik = Dkj = 1
    = 3, if k1, k2 exist, Dik1 = Dk1k2 = Dk2j = 1
    = N, if k1..kN exist, Dik1 = Dk1k2 = ...= DkNj = 1
    = S, if none of the above conditions apply
```


See Also

dist | mandist | selforgmap | sim

Introduced before R2006a

logsig

Log-sigmoid transfer function

Graph and Symbol

$$
\mathbb{1}
$$

$a=\operatorname{logsig}(n)$
Log-Sigmoid Transfer Function

Syntax

```
A = logsig(N,FP)
dA_dN = logsig('dn',N,A,FP)
info = logsig('code')
```


Description

logsig is a transfer function. Transfer functions calculate a layer's output from its net input.
$\mathrm{A}=\operatorname{logsig}(\mathrm{N}, \mathrm{FP})$ takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N's elements squashed into $[0,1]$.
$d A _d N=\operatorname{logsig}(' d n ', N, A, F P)$ returns the $S-b y-Q$ derivative of A with respect to N. If A or FP is not supplied or is set to [], FP reverts to the default parameters, and A is calculated from N .
info = logsig('code') returns useful information for each code string:
logsig('name') returns the name of this function.
logsig('output', FP) returns the [min max] output range.
logsig('active', FP) returns the [min max] active input range.
logsig('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
logsig('fpnames') returns the names of the function parameters.
logsig('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the logsig transfer function.

```
n = -5:0.1:5;
a = logsig(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'logsig';
```


Algorithms

```
logsig(n) = 1 / (1 + exp(-n))
```


See Also

sim | tansig

Introduced before R2006a

Ivqnet

Learning vector quantization neural network

Syntax

```
lvqnet(hiddenSize,lvqLR,lvqLF)
```


Description

LVQ (learning vector quantization) neural networks consist of two layers. The first layer maps input vectors into clusters that are found by the network during training. The second layer merges groups of first layer clusters into the classes defined by the target data.

The total number of first layer clusters is determined by the number of hidden neurons. The larger the hidden layer the more clusters the first layer can learn, and the more complex mapping of input to target classes can be made. The relative number of first layer clusters assigned to each target class are determined according to the distribution of target classes at the time of network initialization. This occurs when the network is automatically configured the first time train is called, or manually configured with the function configure, or manually initialized with the function init is called.
lvqnet (hiddenSize, lvqLR, lvqLF) takes these arguments,

hiddenSize	Size of hidden layer (default = 10)
lvqLR	LVQ learning rate (default = 0.01)
lvqLF	LVQ learning function (default = 'learnlv1' $)$

and returns an LVQ neural network.
The other option for the lvq learning function is learnlv2.

Examples

Train a Learning Vector Quantization Network

Here, an LVQ network is trained to classify iris flowers.

```
[x,t] = iris_dataset;
net = lvqnet(10);
net.trainParam.epochs = 50;
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)
classes = vec2ind(y);
```

perf =
0.0489

See Also

competlayer \| patternnet \| selforgmap

Introduced in R2010b

Ivqoutputs

LVQ outputs processing function

Syntax

```
[X,settings] = lvqoutputs(X)
X = lvqoutputs('apply',X,PS)
X = lvqoutputs('reverse',X,PS)
dx_dy = lvqoutputs('dx_dy',X,X,PS)
```


Description

[X,settings] = lvqoutputs(X) returns its argument unchanged, but stores the ratio of target classes in the settings for use by initlvq to initialize weights.

X = lvqoutputs('apply',X,PS) returns X.
$\mathrm{X}=$ lvqoutputs('reverse', X, PS) returns X .
$d x _d y=$ lvqoutputs('dx_dy', $\left.X, X, P S\right)$ returns the identity derivative.

See Also

initlvq| lvqnet

Introduced in R2010b

mae

Mean absolute error performance function

Syntax

```
perf = mae(E,Y,X,FP)
```


Description

mae is a network performance function. It measures network performance as the mean of absolute errors.

E	Matrix or cell array of error vectors
Y	Matrix or cell array of output vectors (ignored)
X	Vector of all weight and bias values (ignored)
FP	Function parameters (ignored)

and returns the mean absolute error.
dPerf_dx = mae('dx',E,Y,X,perf,FP) returns the derivative of perf with respect to X .
info = mae('code') returns useful information for each code string:
mae ('name') returns the name of this function.
mae('pnames') returns the names of the training parameters.
mae ('pdefaults') returns the default function parameters.

Examples

Create and configure a perceptron to have one input and one neuron:

```
net = perceptron;
net = configure(net,0,0);
```

The network is given a batch of inputs P. The error is calculated by subtracting the output A from target T. Then the mean absolute error is calculated.

```
p = [-10 -5 0 5 10];
t = [00 0 1 1 1];
y = net(p)
e = t-y
perf = mae(e)
```

Note that mae can be called with only one argument because the other arguments are ignored. mae supports those arguments to conform to the standard performance function argument list.

Network Use

You can create a standard network that uses mae with perceptron.
To prepare a custom network to be trained with mae, set net. performFen to 'mae'. This automatically sets net. performParam to the empty matrix [], because mae has no performance parameters.

In either case, calling train or adapt, results in mae being used to calculate performance.

See Also

mse I perceptron

Introduced before R2006a

mandist

Manhattan distance weight function

Syntax

$Z=$ mandist (W, P)
$D=$ mandist (pos)

Description

mandist is the Manhattan distance weight function. Weight functions apply weights to an input to get weighted inputs.
$Z=$ mandist (W, P) takes these inputs,

W	S-by- R weight matrix
P	R-by- Q matrix of Q input (column) vectors

and returns the $S-b y-Q$ matrix of vector distances.
mandist is also a layer distance function, which can be used to find the distances between neurons in a layer.

D = mandist (pos) takes one argument,

pos	S row matrix of neuron positions

and returns the S-by- S matrix of distances.

Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input z .

```
W = rand (4, 3);
P}=\operatorname{rand}(3,1)
Z = mandist ( }W,P\mathrm{ P)
```

Here you define a random matrix of positions for 10 neurons arranged in threedimensional space and then find their distances.

```
pos = rand(3,10);
D = mandist(pos)
```


Network Use

To change a network so an input weight uses mandist, set net.inputWeights\{i,j\}.weightFcn to 'mandist'. For a layer weight, set net.layerWeights\{i,j\}.weightFen to 'mandist'.

To change a network so a layer's topology uses mandist, set net.layers\{i\}. distanceFcn to 'mandist'.

In either case, call sim to simulate the network with dist. See newpnn or newgrnn for simulation examples.

Algorithms

The Manhattan distance D between two vectors X and Y is
$D=\operatorname{sum}(\operatorname{abs}(x-y))$

See Also

dist| linkdist| sim

Introduced before R2006a

mapminmax

Process matrices by mapping row minimum and maximum values to [-1 1 1]

Syntax

$[\mathrm{Y}, \mathrm{PS}]=$ mapminmax $(\mathrm{X}, \mathrm{YMIN}, \mathrm{YMAX})$
$[Y, P S]=$ mapminmax $(X, F P)$
$Y=$ mapminmax ('apply',X,PS)
$\mathrm{X}=$ mapminmax('reverse', $\mathrm{Y}, \mathrm{PS})$
$d x _d y=$ mapminmax ('dx_dy', $\left.X, Y, P S\right)$

Description

mapminmax processes matrices by normalizing the minimum and maximum values of each row to [YMIN, YMAX].
$[\mathrm{Y}, \mathrm{PS}]=$ mapminmax $(\mathrm{X}, \mathrm{YMIN}, \mathrm{YMAX})$ takes X and optional parameters

X	N-by-Q matrix
YMIN	Minimum value for each row of $\mathrm{Y}($ default is -1$)$
YMAX	Maximum value for each row of Y (default is +1)

and returns

Y	N-by-Q matrix
PS	Process settings that allow consistent processing of values

$[\mathrm{Y}, \mathrm{PS}]=$ mapminmax (X,FP) takes parameters as a struct: FP.ymin, FP.ymax.
Y = mapminmax('apply',X,PS) returns Y, given X and settings PS.
$X=$ mapminmax('reverse', $Y, P S$) returns X, given Y and settings PS.
$d x _d y=$ mapminmax('dx_dy', X,Y,PS) returns the reverse derivative.

Examples

Here is how to format a matrix so that the minimum and maximum values of each row are mapped to default interval $[-1,+1]$.

```
x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = mapminmax(x1)
```

Next, apply the same processing settings to new values.

```
x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = mapminmax('apply',x2,PS)
```

Reverse the processing of y 1 to get x 1 again.

```
x1_again = mapminmax('reverse',y1,PS)
```


Definitions

Normalize Inputs and Targets Using mapminmax

Before training, it is often useful to scale the inputs and targets so that they always fall within a specified range. The function mapminmax scales inputs and targets so that they fall in the range $[-1,1]$. The following code illustrates how to use this function.

```
[pn,ps] = mapminmax(p);
[tn,ts] = mapminmax(t);
net = train(net,pn,tn);
```

The original network inputs and targets are given in the matrices p and t. The normalized inputs and targets $p n$ and $t n$ that are returned will all fall in the interval [$1,1]$. The structures ps and ts contain the settings, in this case the minimum and maximum values of the original inputs and targets. After the network has been trained, the ps settings should be used to transform any future inputs that are applied to the network. They effectively become a part of the network, just like the network weights and biases.

If mapminmax is used to scale the targets, then the output of the network will be trained to produce outputs in the range $[-1,1]$. To convert these outputs back into the same units that were used for the original targets, use the settings ts. The following code simulates
the network that was trained in the previous code, and then converts the network output back into the original units.

```
an = sim(net,pn);
a = mapminmax('reverse',an,ts);
```

The network output an corresponds to the normalized targets tn . The unnormalized network output a is in the same units as the original targets t.

If mapminmax is used to preprocess the training set data, then whenever the trained network is used with new inputs they should be preprocessed with the minimum and maximums that were computed for the training set stored in the settings ps. The following code applies a new set of inputs to the network already trained.

```
pnewn = mapminmax('apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapminmax('reverse',anewn,ts);
```

For most networks, including feedforwardnet, these steps are done automatically, so that you only need to use the sim command.

Algorithms

It is assumed that X has only finite real values, and that the elements of each row are not all equal. (If $x \max =x m i n$ or if either $x \max$ or $x \min$ are non-finite, then $\mathrm{y}=\mathrm{x}$ and no change occurs.)

```
y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;
```


See Also

fixunknowns | mapstd| processpca

Introduced in R2006a

mapstd

Process matrices by mapping each row's means to 0 and deviations to 1

Syntax

```
[Y,PS] = mapstd(X,ymean,ystd)
[Y,PS] = mapstd(X,FP)
Y = mapstd('apply',X,PS)
X = mapstd('reverse',Y,PS)
dx_dy = mapstd('dx_dy',X,Y,PS)
```


Description

mapstd processes matrices by transforming the mean and standard deviation of each row to ymean and ystd.
[Y,PS] = mapstd (X,ymean,ystd) takes X and optional parameters,

X	N-by-Q matrix
ymean	Mean value for each row of Y (default is 0)
ystd	Standard deviation for each row of Y (default is 1)

and returns

Y	N-by-Q matrix
PS	Process settings that allow consistent processing of values

$[Y, P S]=\operatorname{mapstd}(X, F P)$ takes parameters as a struct: FP.ymean, FP. Ystd.
Y = mapstd('apply',X,PS) returns Y, given X and settings PS.
X = mapstd('reverse', Y, PS) returns X, given Y and settings PS.
$d x _d y=$ mapstd('dx_dy',X,Y,PS) returns the reverse derivative.

Examples

Here you format a matrix so that the minimum and maximum values of each row are mapped to default mean and STD of 0 and 1 .

```
x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = mapstd(x1)
```

Next, apply the same processing settings to new values.

```
x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = mapstd('apply',x2,PS)
```

Reverse the processing of y 1 to get x 1 again.

```
x1_again = mapstd('reverse',y1,PS)
```


Definitions

Normalize Network Inputs and Targets Using mapstd

Another approach for scaling network inputs and targets is to normalize the mean and standard deviation of the training set. The function mapstd normalizes the inputs and targets so that they will have zero mean and unity standard deviation. The following code illustrates the use of mapstd.

```
[pn,ps] = mapstd(p);
[tn,ts] = mapstd(t);
```

The original network inputs and targets are given in the matrices p and t. The normalized inputs and targets pn and tn that are returned will have zero means and unity standard deviation. The settings structures ps and ts contain the means and standard deviations of the original inputs and original targets. After the network has been trained, you should use these settings to transform any future inputs that are applied to the network. They effectively become a part of the network, just like the network weights and biases.

If mapstd is used to scale the targets, then the output of the network is trained to produce outputs with zero mean and unity standard deviation. To convert these outputs back into the same units that were used for the original targets, use ts. The following
code simulates the network that was trained in the previous code, and then converts the network output back into the original units.

```
an = sim(net,pn);
a = mapstd('reverse',an,ts);
```

The network output an corresponds to the normalized targets tn. The unnormalized network output a is in the same units as the original targets t.

If mapstd is used to preprocess the training set data, then whenever the trained network is used with new inputs, you should preprocess them with the means and standard deviations that were computed for the training set using ps. The following commands apply a new set of inputs to the network already trained:

```
pnewn = mapstd('apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapstd('reverse',anewn,ts);
```

For most networks, including feedforwardnet, these steps are done automatically, so that you only need to use the sim command.

Algorithms

It is assumed that X has only finite real values, and that the elements of each row are not all equal.

```
y = (x-xmean)*(ystd/xstd) + ymean;
```


See Also

fixunknowns | mapminmax | processpca

Introduced in R2006a

maxlinir

Maximum learning rate for linear layer

Syntax

```
lr = maxlinlr(P)
lr = maxlinlr(P,'bias')
```


Description

maxlinlr is used to calculate learning rates for linearlayer.
lr = maxlinlr(P$)$ takes one argument,

P	R-by-Q matrix of input vectors

and returns the maximum learning rate for a linear layer without a bias that is to be trained only on the vectors in P.
lr = maxlinlr(P,'bias') returns the maximum learning rate for a linear layer with a bias.

Examples

Here you define a batch of four two-element input vectors and find the maximum learning rate for a linear layer with a bias.

```
P = [1 2 -4 7; 0.1 3 10 6];
lr = maxlinlr(P,'bias')
```


See Also

learnwh | linearlayer

Introduced before R2006a

meanabs

Mean of absolute elements of matrix or matrices

Syntax

$[\mathrm{m}, \mathrm{n}]=$ meanabs (x)

Description

$[m, n]=$ meanabs (x) takes a matrix or cell array of matrices and returns,

m	Mean value of all absolute finite values
n	Number of finite values

If x contains no finite values, the mean returned is 0 .

Examples

```
m = meanabs([1 2;3 4])
[m,n] = meanabs({[1 2; NaN 4], [4 5; 2 3]})
```


See Also

meansqr | sumabs | sumsqr

Introduced in R2010b

meansqr

Mean of squared elements of matrix or matrices

Syntax

[m,n] = meansqr (x)

Description

$[m, n]=$ meansqr (x) takes a matrix or cell array of matrices and returns,

m	Mean value of all squared finite values
n	Number of finite values

If x contains no finite values, the mean returned is 0 .

Examples

```
m = meansqr([ll 2;3 4])
[m,n] = meansqr({[1 2; NaN 4], [4 5; 2 3]})
```


See Also

meanabs | sumabs | sumsqr

Introduced in R2010b

midpoint

Midpoint weight initialization function

Syntax

```
W = midpoint(S,PR)
```


Description

midpoint is a weight initialization function that sets weight (row) vectors to the center of the input ranges.
$\mathrm{W}=$ midpoint (S, PR) takes two arguments,

S	Number of rows (neurons)
$P R$	R-by-Q matrix of input value ranges $=[$ Pmin Pmax $]$

and returns an S-by-R matrix with rows set to (Pmin+Pmax)' $/ 2$.

Examples

Here initial weight values are calculated for a five-neuron layer with input elements ranging over [0 1] and [-2 2].

```
W = midpoint(5,[0 1; -2 2])
```


Network Use

You can create a standard network that uses midpoint to initialize weights by calling newc.

To prepare the weights and the bias of layer i of a custom network to initialize with midpoint,

1 Set net.initFen to 'initlay'. (net.initParam automatically becomes initlay's default parameters.)
2 Set net.layers\{i\}.initFcn to 'initwb'.
3 Set each net.inputWeights\{i,j\}.initFcn to 'midpoint'. Set each net.layerWeights\{i,j\}.initFcn to 'midpoint'.

To initialize the network, call init.

See Also

init | initlay | initwb
Introduced before R2006a

minmax

Ranges of matrix rows

Syntax

```
pr = minmax(P)
```


Description

$\mathrm{pr}=\operatorname{minmax}(\mathrm{P})$ takes one argument,

P	R-by-Q matrix

and returns the R-by- 2 matrix PR of minimum and maximum values for each row of P.
Alternatively, P can be an M-by-N cell array of matrices. Each matrix P $\{i, j\}$ should have Ri rows and Q columns. In this case, minmax returns an M -by- 1 cell array where the mth matrix is an Ri-by-2 matrix of the minimum and maximum values of elements for the matrix on the ith row of P.

Examples

```
P = [0 1 2; -1 -2 -0.5]
pr = minmax(P)
P = {[0 1; -1 -2] [2 3 -2; 8 0 2]; [1 -2] [9 7 3]};
pr = minmax(P)
```

Introduced before R2006a

mse

Mean squared normalized error performance function

Syntax

```
perf = mse(net,t,y,ew)
```


Description

mse is a network performance function. It measures the network's performance according to the mean of squared errors.
perf $=$ mse (net, t, y,ew) takes these arguments:

net	Neural network
t	Matrix or cell array of targets
y	Matrix or cell array of outputs
ew	Error weights (optional)

and returns the mean squared error.
This function has two optional parameters, which are associated with networks whose net. trainFen is set to this function:

- 'regularization' can be set to any value between 0 and 1 . The greater the regularization value, the more squared weights and biases are included in the performance calculation relative to errors. The default is 0 , corresponding to no regularization.
- 'normalization' can be set to 'none' (the default); 'standard', which normalizes errors between -2 and 2 , corresponding to normalizing outputs and targets between -1 and 1 ; and 'percent', which normalizes errors between -1 and 1 . This feature is useful for networks with multi-element outputs. It ensures that the relative accuracy of output elements with differing target value ranges are treated as equally important, instead of prioritizing the relative accuracy of the output element with the largest target value range.

You can create a standard network that uses mse with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with mse, set net.performFcn to 'mse'. This automatically sets net. performParam to a structure with the default optional parameter values.

Examples

Train Neural Network Using mse Performance Function

This example shows shows how to train a neural network using the mse performance function.

Here a two-layer feedforward network is created and trained to estimate body fat percentage using the mse performance function and a regularization value of 0.01.

```
[x, t] = bodyfat_dataset;
net = feedforwardnet(10);
net.performParam.regularization = 0.01;
```

MSE is the default performance function for feedforwardnet.

```
net.performFcn
```

```
ans =
```

'mse'

Train the network and evaluate performance.

```
net = train(net, x, t);
y = net(x);
perf = perform(net, t, y)
perf =
    20.7769
```

Alternatively, you can call mse directly.

```
perf = mse(net, t, y, 'regularization', 0.01)
perf =
    20.7769
```


See Also

mae

Introduced before R2006a

narnet

Nonlinear autoregressive neural network

Syntax

narnet(feedbackDelays,hiddenSizes,trainFcn)

Description

NAR (nonlinear autoregressive) neural networks can be trained to predict a time series from that series past values.
narnet (feedbackDelays,hiddenSizes,trainFcn) takes these arguments,

feedbackDelays	Row vector of increasing 0 or positive delays (default = $1: 2)$
hiddenSizes	Row vector of one or more hidden layer sizes (default $=$ $10)$
trainFcn	Training function (default = 'trainlm')

and returns a NAR neural network.

Examples

Train NAR Network and Predict on New Data

Load the simple time-series prediction data and create a NAR network.

```
T = simplenar dataset;
net = narnet(1:2,10);
```

Prepare the time series data using preparets and train the network.

```
[Xs,Xi,Ai,Ts] = preparets(net,{},{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
```


Calculate the network performance.

```
[Y,Xf,Af] = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)
```


perf =

$1.0100 \mathrm{e}-09$

To predict the output for the next 20 time steps, first simulate the network in closed loop form.

```
[netc,Xic,Aic] = closeloop(net,Xf,Af);
view(netc)
```


The network only has one input. In closed loop mode, this input is joined to the output.
To simulate the network 20 time steps ahead, input an empty cell array of length 20 . The network requires only the initial conditions given in Xic and Aic.

```
y2 = netc(cell(0,20),Xic,Aic)
y2 =
    1x20 cell array
    Columns 1 through 5
        {[0.8346]} {[0.3329]} {[0.9084]} {[1.0000]} {[0.3190]}
    Columns 6 through 10
        {[0.7329]} {[0.9801]} {[0.6409]} {[0.5146]} {[0.9746]}
    Columns 11 through 15
        {[0.9077]} {[0.2807]} {[0.8651]} {[0.9897]} {[0.4093]}
    Columns 16 through 20
        {[0.6838]} {[0.9976]} {[0.7007]} {[0.4311]} {[0.9660]}
```


See Also

narnet | narxnet | preparets | removedelay | timedelaynet

Introduced in R2010b

narxnet

Nonlinear autoregressive neural network with external input

Syntax

narxnet(inputDelays,feedbackDelays,hiddenSizes,trainFcn)

Description

NARX (Nonlinear autoregressive with external input) networks can learn to predict one time series given past values of the same time series, the feedback input, and another time series, called the external or exogenous time series.
narxnet(inputDelays,feedbackDelays,hiddenSizes,trainFcn) takes these arguments,

inputDelays	Row vector of increasing 0 or positive delays (default = $1: 2)$
feedbackDelays	Row vector of increasing 0 or positive delays (default = $1: 2)$
hiddenSizes	Row vector of one or more hidden layer sizes (default = $10)$
trainFcn	Training function (default = 'trainlm')

and returns a NARX neural network.

Examples

Train NARX Network and Predict on New Data

Partition the training data. Use Xnew to do prediction in closed loop mode later.

```
[X,T] = simpleseries dataset;
Xnew = X(81:100);
```

```
X = X(1:80);
T = T(1:80);
```

Train a network, and simulate it on the first 80 observations

```
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
```


Calculate the network performance.

```
[Y,Xf,Af] = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)
```

perf =
0.0153

Run the prediction for 20 time steps ahead in closed loop mode.

```
[netc,Xic,Aic] = closeloop(net,Xf,Af);
view(netc)
```


$y^{2}=$ netc (Xnew, Xic,Aic)
$y^{2}=$
1×20 cell array
Columns 1 through 5

$$
\{[-0.0156]\} \quad\{[0.1133]\} \quad\{[-0.1472]\} \quad\{[-0.0706]\} \quad\{[0.0355]\}
$$

Columns 6 through 10
$\{[-0.2829]\} \quad\{[0.2047]\} \quad\{[-0.3809]\} \quad\{[-0.2836]\} \quad\{[0.1886]\}$
Columns 11 through 15
$\{[-0.1813]\} \quad\{[0.1373]\} \quad\{[0.2189]\} \quad\{[0.3122]\} \quad\{[0.2346]\}$
Columns 16 through 20
$\{[-0.0156]\}$
$\{[0.0724]\}$
$\{[0.3395]\}$
$\{[0.1940]\}$
[0.0757] \}

See Also

closeloop | narnet | openloop | preparets | removedelay | timedelaynet

Introduced in R2010b

nctool

Neural network classification or clustering tool

Syntax

nctool

Description

nctool opens the neural network clustering GUI.
For more information and an example of its usage, see "Cluster Data with a SelfOrganizing Map".

Algorithms

nctool leads you through solving a clustering problem using a self-organizing map. The map forms a compressed representation of the inputs space, reflecting both the relative density of input vectors in that space, and a two-dimensional compressed representation of the input-space topology.

See Also

nftool | nprtool | ntstool

Introduced in R2008a

negdist

Negative distance weight function

Syntax

```
Z = negdist(W,P)
dim = negdist('size',S,R,FP)
dw = negdist('dz_dw',W,P,Z,FP)
```


Description

negdist is a weight function. Weight functions apply weights to an input to get weighted inputs.
$Z=$ negdist (W, P) takes these inputs,

W	S-by-R weight matrix
P	R-by-Q matrix of Q input (column) vectors
FP	Row cell array of function parameters (optional, ignored)

and returns the $S-b y-Q$ matrix of negative vector distances.
$\operatorname{dim}=$ negdist('size', $S, R, F P$) takes the layer dimension S, input dimension R, and function parameters, and returns the weight size [S-by-R].
dw = negdist('dz_dw', $\mathrm{W}, \mathrm{P}, \mathrm{Z}, \mathrm{FP}$) returns the derivative of Z with respect to W .

Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input z.

```
W = rand (4,3);
P = rand (3,1);
Z = negdist(W,P)
```


Network Use

You can create a standard network that uses negdist by calling competlayer or selforgmap.

To change a network so an input weight uses negdist, set net.inputWeights\{i,j\}.weightFcn to 'negdist'. For a layer weight, set net. layerWeights\{i,j\}.weightFen to 'negdist'.

In either case, call sim to simulate the network with negdist.

Algorithms

negdist returns the negative Euclidean distance:
$z=-\operatorname{sqrt}\left(\operatorname{sum}(w-p)^{\wedge} 2\right)$

See Also

competlayer | dist \| dotprod \| selforgmap \| sim

Introduced before R2006a

netinv

Inverse transfer function

Syntax

```
A = netinv(N,FP)
```


Description

netinv is a transfer function. Transfer functions calculate a layer's output from its net input.
A = netinv (N,FP) takes inputs

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns $1 / \mathrm{N}$.
info = netinv('code') returns information about this function. The following codes are supported:
netinv('name') returns the name of this function.
netinv('output', FP) returns the [min max] output range.
netinv('active',FP) returns the [min max] active input range.
netinv('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
netinv('fpnames') returns the names of the function parameters.
netinv('fpdefaults') returns the default function parameters.

Examples

Here you define 10 five-element net input vectors N and calculate A.
$\mathrm{n}=\operatorname{rand}(5,10) ;$
$\mathrm{a}=$ netinv(n);
Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'netinv';
```


See Also

logsig|tansig

Introduced in R2006a

netprod

Product net input function

Syntax

```
N = netprod({Z1,Z2,\ldots,Zn})
info = netprod('code')
```


Description

netprod is a net input function. Net input functions calculate a layer's net input by combining its weighted inputs and biases.
$\mathrm{N}=\operatorname{netprod}(\{\mathrm{Z} 1, \mathrm{Z} 2, \ldots, \mathrm{Zn}\})$ takes

Zi	S -by- Q matrices in a row cell array

and returns an element-wise product of $\mathrm{Z1}$ to Zn .
info = netprod('code') returns information about this function. The following codes are supported:

'deriv'	Name of derivative function
' fullderiv'	Full N-by-S-by-Q derivative = 1, element-wise S-by-Q derivative = 0
'name'	Full name
'fpnames'	Returns names of function parameters
'fpdefaults'	Returns default function parameters

Examples

Here netprod combines two sets of weighted input vectors (user-defined).

```
Z1 = [1 2 4;3 4 1];
Z2 = [-1 2 2; -5 -6 1];
```

```
Z = {Z1,z2};
N = netprod({Z})
```

Here netprod combines the same weighted inputs with a bias vector. Because Z1 and Z2 each contain three concurrent vectors, three concurrent copies of B must be created with concur so that all sizes match.

B = $[0 ;-1]$;
Z $=\{$ Z1, $Z 2$, concur $(B, 3)\}$;
$\mathrm{N}=$ netprod(Z)

Network Use

You can create a standard network that uses netprod by calling newpnn or newgrnn.
To change a network so that a layer uses netprod, set net.layers\{i\}.netInputFcn to 'netprod'.

In either case, call sim to simulate the network with netprod. See newpnn or newgrnn for simulation examples.

See Also

concur | netsum | sim

Introduced before R2006a

netsum

Sum net input function

```
Syntax
N = netsum({Z1,Z2,...,Zn},FP)
info = netsum('code')
```


Description

netsum is a net input function. Net input functions calculate a layer's net input by combining its weighted inputs and biases.

$\mathrm{N}=$ netsum $(\{\mathrm{Z1}, \mathrm{Z} 2, \ldots, \mathrm{Zn}\}, \mathrm{FP})$ takes $\mathrm{Z1}$ to Zn and optional function parameters,
Zi
FP

and returns the elementwise sum of $\mathrm{Z1}$ to Zn .
info = netsum('code') returns information about this function. The following codes are supported:
netsum ('name') returns the name of this function.
netsum ('type') returns the type of this function.
netsum('fpnames') returns the names of the function parameters.
netsum('fpdefaults') returns default function parameter values.
netsum('fpcheck', FP) throws an error for illegal function parameters.
netsum('fullderiv') returns 0 or 1, depending on whether the derivative is S -by- Q or n-by-S-by-d.

Examples

Here netsum combines two sets of weighted input vectors and a bias. You must use concur to make b the same dimensions as z1 and z2.

```
z1 = [1, 2, 4; 3, 4, 1]
z2 = [-1, 2, 2; -5, -6, 1]
b = [0; -1]
n = netsum({z1, z2, concur(b, 3)})
```

Assign this net input function to the first layer of a network.

```
net = feedforwardnet();
net.layers{1}.netInputFcn = 'netsum';
```


See Also

cascadeforwardnet | feedforwardnet | netinv | netprod

Introduced before R2006a

network

Create custom neural network

Syntax

```
net = network
net =
network(numInputs, numLayers,biasConnect,inputConnect,layerConnect,ou
tputConnect)
```


To Get Help

Type help network/network.

Description

network creates new custom networks. It is used to create networks that are then customized by functions such as feedforwardnet and narxnet.
net $=$ network without arguments returns a new neural network with no inputs, layers or outputs.

```
net =
```

network(numInputs, numLayers,biasConnect,inputConnect, layerConnect, ou
tputConnect) takes these optional arguments (shown with default values):

numInputs	Number of inputs, 0
numLayers	Number of layers, 0
biasConnect	numLayers-by-1 Boolean vector, zeros
inputConnect	numLayers-by-numInputs Boolean matrix, zeros
layerConnect	numLayers-by-numLayers Boolean matrix, zeros
outputConnect	1 -by-numLayers Boolean vector, zeros

and returns

net	New network with the given property values

Properties

Architecture Properties

net.numInputs	0 or a positive integer	Number of inputs.
net.numLayers	0 or a positive integer	Number of layers.
net.biasConnect	$\begin{aligned} & \text { numLayer-by-1 } \\ & \text { Boolean vector } \end{aligned}$	If net.biasConnect (i) is 1 , then layer i has a bias, and net.biases $\{\mathrm{i}\}$ is a structure describing that bias.
net.inputConnect	$\begin{aligned} & \text { numLayer-by- } \\ & \text { numInputs } \\ & \text { Boolean vector } \end{aligned}$	If net.inputConnect (i, j) is 1 , then layer i has a weight coming from input j, and net.inputWeights $\{i, j\}$ is a structure describing that weight.
net.layerConnect	$\begin{aligned} & \text { numLayer-by- } \\ & \text { numLayers } \\ & \text { Boolean vector } \end{aligned}$	If net.layerConnect (i, j) is 1 , then layer i has a weight coming from layer j, and net.layerWeights\{i,j\} is a structure describing that weight.
net. numInputs	0 or a positive integer	Number of inputs.
net.numLayers	0 or a positive integer	Number of layers.
net.biasConnect	numLayer-by-1 Boolean vector	If net.biasConnect (i) is 1 , then layer i has a bias, and net.biases $\{i\}$ is a structure describing that bias.
net.inputConnect	numLayer-bynumInputs Boolean vector	If net. inputConnect (i, j) is 1 , then layer i has a weight coming from input j, and net.inputWeights $\{i, j\}$ is a structure describing that weight.

net.layerConnect	numLayer-bynumLayers Boolean vector	If net. layerConnect (i, j) is 1 , then layer i has a weight coming from layer j, and net.layerWeights\{i,j\} is a structure describing that weight.
net.outputConnect	1-by-numLayers Boolean vector	If net. outputConnect (i) is 1 , then the network has an output from layer i, and net. outputs \{i\} is a structure describing that output.
net. numOutputs	0 or a positive integer (read only)	Number of network outputs according to net.outputConnect.
net.numInputDelays	0 or a positive integer (read only)	Maximum input delay according to all net.inputWeights\{i,j\}.delays.
net.numLayerDelays	0 or a positive number (read only)	Maximum layer delay according to all net.layerWeights\{i,j\}.delays.

Subobject Structure Properties

net.inputs	numInputs-by-1 cell array	net. inputs $\{i\}$ is a structure defining input i.
net.layers	numLayers-by-1 cell array	net. layers $\{i\}$ is a structure defining layer i.
net.biases	numLayers-by-1 cell array	If net.biasConnect (i) is 1, then net.biases $\{i\}$ is a structure defining the bias for layer i.
net.inputWeights	numLayers-by- numInputs cell array	If net.inputConnect (i,j) is 1, then net.inputWeights $\{i, j\}$ is a structure defining the weight to layer i from input j.
net.layerWeights	numLayers-by- numLayers cell array	If net.layerConnect (i, j) is 1, then net.layerWeights $\{i, j\}$ is a structure defining the weight to layer i from layer j.

net. outputs	1-by-numLayers cell array	If net. outputConnect (i) is 1, then net. outputs $\{i\}$ is a structure defining the network output from layer i.

Function Properties

net. adaptFcn	Name of a network adaption function or ' '
net. initFcn	Name of a network initialization function or ' '
net.performFcn	Name of a network performance function or ''
net.trainFcn	Name of a network training function or ' '

Parameter Properties

net. adaptParam	Network adaption parameters
net.initParam	Network initialization parameters
net.performParam	Network performance parameters
net.trainParam	Network training parameters

Weight and Bias Value Properties

net.IW	numLayers-by-numInputs cell array of input weight values
net. LW	numLayers-by-numLayers cell array of layer weight values
net.b	numLayers-by-1 cell array of bias values

Other Properties

[^0]
Examples

Create Network with One Input and Two Layers

This example shows how to create a network without any inputs and layers, and then set its numbers of inputs and layers to 1 and 2 respectively.

```
net = network
net.numInputs = 1
net.numLayers = 2
```

Alternatively, you can create the same network with one line of code.

```
net = network(1,2)
```


Create Feedforward Network and View Properties

This example shows how to create a one-input, two-layer, feedforward network. Only the first layer has a bias. An input weight connects to layer 1 from input 1. A layer weight connects to layer 2 from layer 1. Layer 2 is a network output and has a target.

```
net = network(1,2,[1;0],[1; 0],[0 0; 1 0],[0 1])
```

You can view the the network subobjects with the following code.

```
net.inputs{1}
net.layers{1}, net.layers{2}
net.biases{1}
net.inputWeights{1,1}, net.layerWeights{2,1}
net.outputs{2}
```

You can alter the properties of any of the network subobjects. This code changes the transfer functions of both layers:

```
net.layers{1}.transferFcn = 'tansig';
net.layers{2}.transferFcn = 'logsig';
```

You can view the weights for the connection from the first input to the first layer as follows. The weights for a connection from an input to a layer are stored in net. IW. If the values are not yet set, these result is empty.

```
net.IW{1,1}
```

You can view the weights for the connection from the first layer to the second layer as follows. Weights for a connection from a layer to a layer are stored in net. LW. Again, if the values are not yet set, the result is empty.

```
net.LW{2,1}
```

You can view the bias values for the first layer as follows.

```
net.b{1}
```

To change the number of elements in input 1 to 2 , set each element's range:

```
net.inputs{1}.range = [0 1; -1 1];
```

To simulate the network for a two-element input vector, the code might look like this:

```
p = [0.5; -0.1];
y = sim(net,p)
```


See Also

sim

Topics

"Neural Network Object Properties"
"Neural Network Subobject Properties"

Introduced before R2006a

newgrnn

Design generalized regression neural network

Syntax

```
net = newgrnn(P,T,spread)
```


Description

Generalized regression neural networks (grnns) are a kind of radial basis network that is often used for function approximation. grnns can be designed very quickly.
net $=$ newgrnn $(P, T$, spread $)$ takes three inputs,

P	R-by-Q matrix of Q input vectors
T	S-by-Q matrix of Q target class vectors
spread	Spread of radial basis functions (default $=1.0$)

and returns a new generalized regression neural network.
The larger the spread, the smoother the function approximation. To fit data very closely, use a spread smaller than the typical distance between input vectors. To fit the data more smoothly, use a larger spread.

Properties

newgrnn creates a two-layer network. The first layer has radbas neurons, and calculates weighted inputs with dist and net input with netprod. The second layer has purelin neurons, calculates weighted input with normprod, and net inputs with netsum. Only the first layer has biases.
newgrnn sets the first layer weights to P^{\prime}, and the first layer biases are all set to $0.8326 /$ spread, resulting in radial basis functions that cross 0.5 at weighted inputs of +/- spread. The second layer weights W2 are set to T.

Examples

Here you design a radial basis network, given inputs P and targets T.

```
P = [llll
T = [2.0 4.1 5.9];
net = newgrnn(P,T);
```

The network is simulated for a new input.
$\mathrm{P}=1.5$;
$Y=\operatorname{sim}(n e t, P)$

References

Wasserman, P.D., Advanced Methods in Neural Computing, New York, Van Nostrand Reinhold, 1993, pp. 155-61

See Also

newpnn | newrb | newrbe | sim

Introduced before R2006a

newlind

Design linear layer

Syntax

```
net = newlind(P,T,Pi)
```


Description

net $=$ newlind $(P, T, P i)$ takes these input arguments,

P	$R-$ by-Q matrix of Q input vectors
T	$S-$ by-Q matrix of Q target class vectors
Pi	1-by-ID cell array of initial input delay states

where each element Pi $\{\mathrm{i}, \mathrm{k}\}$ is an Ri-by-Q matrix, and the default = []; and returns a linear layer designed to output T (with minimum sum square error) given input P .
newlind ($\mathrm{P}, \mathrm{T}, \mathrm{Pi}$) can also solve for linear networks with input delays and multiple inputs and layers by supplying input and target data in cell array form:

P	Ni-by-TS cell array	Each element $P\{i, t s\}$ is an Ri-by-Q input matrix
T	Nt-by-TS cell array	Each element $P\{i$, ts $\}$ is a Vi-by-Q matrix
Pi	Ni-by-ID cell array	Each element Pi $\{i, k\}$ is an Ri-by-Q matrix, default $=[]$

and returns a linear network with ID input delays, Ni network inputs, and N1 layers, designed to output T (with minimum sum square error) given input P .

Examples

You want a linear layer that outputs T given P for the following definitions:

```
P = [llll
T = [2.0 4.1 5.9];
```

Use newlind to design such a network and check its response.

```
net = newlind(P,T);
Y = sim(net,P)
```

You want another linear layer that outputs the sequence T given the sequence P and two initial input delay states Pi.

```
P = {1 2 1 3 3 2};
Pi = {1 3};
T = {5.0 6.1 4.0 6.0 6.9 8.0};
net = newlind(P,T,Pi);
Y = sim(net,P,Pi)
```

You want a linear network with two outputs Y1 and Y2 that generate sequences T1 and T 2 , given the sequences P1 and P2, with three initial input delay states Pi1 for input 1 and three initial delays states Pi2 for input 2 .

```
P1 = {1 2 1 3 3 2}; Pil = {1 3 0};
P2 = {1 2 1 1 2 1}; Pi2 = {2 1 2};
T1 ={5.0 6.1 4.0 6.0 6.9 8.0};
T2 = {11.0 12.1 10.1 10.9 13.0 13.0};
net = newlind([P1; P2],[T1; T2],[Pi1; Pi2]);
Y = sim(net,[P1; P2],[Pi1; Pi2]);
Y1 = Y(1,:)
Y2 = Y(2,:)
```


Algorithms

newlind calculates weight W and bias B values for a linear layer from inputs P and targets T by solving this linear equation in the least squares sense:

```
[W b] * [P; ones] = T
```


See Also

sim

Introduced before R2006a

newpnn

Design probabilistic neural network

Syntax

```
net = newpnn(P,T,spread)
```


Description

Probabilistic neural networks (PNN) are a kind of radial basis network suitable for classification problems.
net $=$ newpnn $(P, T$, spread $)$ takes two or three arguments,

P	R-by- Q matrix of Q input vectors
T	S-by- Q matrix of Q target class vectors
spread	Spread of radial basis functions (default $=0.1)$

and returns a new probabilistic neural network.
If spread is near zero, the network acts as a nearest neighbor classifier. As spread becomes larger, the designed network takes into account several nearby design vectors.

Examples

Here a classification problem is defined with a set of inputs P and class indices Tc.

```
P = [lllllllll}
Tc = [1 [ 2 3 2 2 3 1];
```

The class indices are converted to target vectors, and a PNN is designed and tested.

```
T = ind2vec(Tc)
net = newpnn(P,T);
```

$\mathrm{Y}=\operatorname{sim}($ net, P$)$
$Y c=\operatorname{vec} 2 i n d(Y)$

Algorithms

newpnn creates a two-layer network. The first layer has radbas neurons, and calculates its weighted inputs with dist and its net input with netprod. The second layer has compet neurons, and calculates its weighted input with dotprod and its net inputs with net sum. Only the first layer has biases.
newpnn sets the first-layer weights to P^{\prime}, and the first-layer biases are all set to $0.8326 /$ spread, resulting in radial basis functions that cross 0.5 at weighted inputs of +/- spread. The second-layer weights W2 are set to T.

References

Wasserman, P.D., Advanced Methods in Neural Computing, New York, Van Nostrand Reinhold, 1993, pp. 35-55

See Also

ind2vec | newgrnn | newrb | newrbe | sim | vec2ind

Introduced before R2006a

newrb

Design radial basis network

Syntax

```
net = newrb(P,T,goal,spread,MN,DF)
```


Description

Radial basis networks can be used to approximate functions. newrb adds neurons to the hidden layer of a radial basis network until it meets the specified mean squared error goal.

```
net = newrb (P,T,goal, spread,MN,DF) takes two of these arguments,
```

P	R-by-Q matrix of Q input vectors
T	S-by-Q matrix of Q target class vectors
goal	Mean squared error goal (default $=0.0$)
spread	Spread of radial basis functions (default $=1.0$)
MN	Maximum number of neurons (default is Q)
DF	Number of neurons to add between displays (default $=25$)

and returns a new radial basis network.
The larger spread is, the smoother the function approximation. Too large a spread means a lot of neurons are required to fit a fast-changing function. Too small a spread means many neurons are required to fit a smooth function, and the network might not generalize well. Call newrb with different spreads to find the best value for a given problem.

Examples

Here you design a radial basis network, given inputs P and targets T .

```
P = [llll
T = [2.0 4.1 5.9];
net = newrb(P,T);
```

The network is simulated for a new input.
$P=1.5$;
$\mathrm{Y}=\operatorname{sim}($ net, P$)$

Algorithms

newrb creates a two-layer network. The first layer has radbas neurons, and calculates its weighted inputs with dist and its net input with netprod. The second layer has purelin neurons, and calculates its weighted input with dotprod and its net inputs with netsum. Both layers have biases.

Initially the radbas layer has no neurons. The following steps are repeated until the network's mean squared error falls below goal.

1 The network is simulated.
2 The input vector with the greatest error is found.
3 A radbas neuron is added with weights equal to that vector.
4 The purelin layer weights are redesigned to minimize error.

See Also

newgrnn | newpnn | newrbe | sim

Introduced before R2006a

newrbe

Design exact radial basis network

Syntax

```
net = newrbe(P,T,spread)
```


Description

Radial basis networks can be used to approximate functions. newrbe very quickly designs a radial basis network with zero error on the design vectors.
net $=$ newrbe $(P, T$, spread $)$ takes two or three arguments,

P	$R x Q$ matrix of Q R-element input vectors
T	$S x Q$ matrix of Q S-element target class vectors
spread	Spread of radial basis functions (default $=1.0$)

and returns a new exact radial basis network.
The larger the spread is, the smoother the function approximation will be. Too large a spread can cause numerical problems.

Examples

Here you design a radial basis network given inputs P and targets T .

```
P = [ll 2 3}]
T = [2.0 4.1 5.9];
net = newrbe(P,T);
```

The network is simulated for a new input.

```
P = 1.5;
Y = sim(net,P)
```


Algorithms

newrbe creates a two-layer network. The first layer has radbas neurons, and calculates its weighted inputs with dist and its net input with netprod. The second layer has purelin neurons, and calculates its weighted input with dotprod and its net inputs with netsum. Both layers have biases.
newrbe sets the first-layer weights to P^{\prime}, and the first-layer biases are all set to $0.8326 /$ spread, resulting in radial basis functions that cross 0.5 at weighted inputs of +/- spread.

The second-layer weights $\operatorname{IW}\{2,1\}$ and biases $\mathrm{b}\{2\}$ are found by simulating the firstlayer outputs $A\{1\}$ and then solving the following linear expression:

```
[W{2,1} b{2}] * [A{1}; ones] = T
```


See Also

newgrnn | newpnn | newrb | sim

Introduced before R2006a

nftool

Neural network fitting tool

Syntax

nftool

Description

nftool opens the neural network fitting tool GUI.
For more information and an example of its usage, see "Fit Data with a Shallow Neural Network".

Algorithms

nftool leads you through solving a data fitting problem, solving it with a two-layer feedforward network trained with Levenberg-Marquardt.

See Also

nctool | nprtool | ntstool

Introduced in R2006a

nncell2mat

Combine neural network cell data into matrix

Syntax

[y,i,j] nncell2mat(x)

Description

Y	Cell array formed by concatenating matrices
i	Array of row sizes
ji	Array of column sizes

The row and column sizes returned by nncell2mat can be used to convert the returned matrix back into a cell of matrices with mat2cell.

Examples

Here neural network data is converted to a matrix and back.

```
c}={\mathrm{ rands (2,3) rands (2,3); rands (5,3) rands (5, 3) };
[m,i,j] = nncell2mat(c)
c3 = mat2cell(m,i,j)
```


See Also

nndata|nnsize

Introduced in R2010b

nncorr

Crross correlation between neural network time series

Syntax

nncorr(a,b,maxlag,'flag')

Description

nncorr(a,b,maxlag,'flag') takes these arguments,

a	Matrix or cell array, with columns interpreted as timesteps, and having a total number of matrix rows of N.
b	Matrix or cell array, with columns interpreted as timesteps, and having a total number of matrix rows of M.
maxlag	Maximum number of time lags
flag	Type of normalization (default $=$ ' none' $)$

and returns an N-by- M cell array where each $\{i, j\}$ element is a $2 *$ maxlag +1 length row vector formed from the correlations of a elements (i.e., matrix row) i and b elements (i.e., matrix column) j.

If a and b are specified with row vectors, the result is returned in matrix form.
The options for the normalization $f l a g$ are:

- 'biased' - scales the raw cross-correlation by $1 / \mathrm{N}$.
- 'unbiased' - scales the raw correlation by $1 /(N-a b s(k))$, where k is the index into the result.
- 'coeff' - normalizes the sequence so that the correlations at zero lag are 1.0.
- 'none' - no scaling. This is the default.

Examples

Here the autocorrelation of a random 1-element, 1 -sample, 20-timestep signal is calculated with a maximum lag of 10 .

```
a = nndata(1, 1, 20)
aa = nncorr(a,a,10)
```

Here the cross-correlation of the first signal with another random 2 -element signal are found, with a maximum lag of 8 .

```
b = nndata (2,1,20)
ab = nncorr(a,b,8)
```


See Also

confusion | regression

Introduced in R2010b

nndata

Create neural network data

Syntax

```
nndata(N,Q,TS,v)
```


Description

nndata ($\mathrm{N}, \mathrm{Q}, \mathrm{TS}, \mathrm{v}$) takes these arguments,

N	Vector of M element sizes
Q	Number of samples
TS	Number of timesteps
V	Scalar value

and returns an M-by-TS cell array where each row i has N (i) -by-Q sized matrices of value v. If v is not specified, random values are returned.

You can access subsets of neural network data with getelements, getsamples, gettimesteps, and getsignals.

You can set subsets of neural network data with setelements, setsamples, settimesteps, and setsignals.

You can concatenate subsets of neural network data with catelements, catsamples, cattimesteps, and catsignals.

Examples

Here four samples of five timesteps, for a 2 -element signal consisting of zero values is created:

```
x = nndata (2,4,5,0)
```

To create random data with the same dimensions:
$\mathrm{x}=$ nndata $(2,4,5)$
Here static (1 timestep) data of 12 samples of 4 elements is created.
$\mathrm{x}=\mathrm{nndata}(4,12)$

See Also

fromnndata|nndata2sim|nnsize| sim2nndata|tonndata

Introduced in R2010b

nndata2gpu

Format neural data for efficient GPU training or simulation

Syntax

```
nndata2gpu(x)
[Y,Q,N,TS] = nndata2gpu(X)
nndata2gpu(X,PRECISION)
```


Description

nndata2gpu requires Parallel Computing Toolbox ${ }^{\text {TM }}$.
nndata2gpu (x) takes an N -by- Q matrix X of Q N -element column vectors, and returns it in a form for neural network training and simulation on the current GPU device.

The N-by- Q matrix becomes a $Q Q$-by-N gpuArray where $Q Q$ is Q rounded up to the next multiple of 32 . The extra rows ($\mathrm{Q}+1$) : QQ are filled with NaN values. The gpuArray has the same precision ('single' or 'double') as X .
$[\mathrm{Y}, \mathrm{Q}, \mathrm{N}, \mathrm{TS}]=$ nndata2gpu(X) can also take an M-by-TS cell array of M signals over TS time steps. Each element of X\{i,ts\} should be an Ni-by-Q matrix of Q Ni-element vectors, representing the i th signal vector at time step ts, across all Q time series. In this case, the gpuArray Y returned is $Q Q$-by- (sum (Ni)*TS). Dimensions Ni, Q, and TS are also returned so they can be used with gpu2nndata to perform the reverse formatting.
nndata2gpu (X, PRECISION) specifies the default precision of the gpuArray, which can be 'double' or 'single'.

Examples

Copy a matrix to the GPU and back:

```
x = rand (5,6)
[y,q] = nndata2gpu(x)
x2 = gpu2nndata(y,q)
```

Copy neural network cell array data, representing four time series, each consisting of five time steps of 2 -element and 3 -element signals:

```
x = nndata([2;3],4,5)
[y,q,n,ts] = nndata2gpu(x)
x2 = gpu2nndata(y,q,n,ts)
```


See Also

gpu2nndata

Introduced in R2012b

nndata2sim

Convert neural network data to Simulink time series

Syntax

```
nndata2sim(x,i,q)
```


Description

nndata2sim(x, i, q) takes these arguments,

x	Neural network data
i	Index of signal (default = 1)
q	Index of sample (default $=1$)

and returns time series q of signal i as a Simulink time series structure.

Examples

Here random neural network data is created with two signals having 4 and 3 elements respectively, over 10 timesteps. Three such series are created.
$\mathrm{x}=$ nndata $([4 ; 3], 3,10)$;
Now the second signal of the first series is converted to Simulink form.

```
y_2_1 = nndata2sim(x,2,1)
```


See Also

nndata|nnsize| sim2nndata

Introduced in R2010b

nnsize

Number of neural data elements, samples, timesteps, and signals

Syntax

```
[N,Q,TS,M] = nnsize(X)
```


Description

$[N, Q, T S, M]=$ nnsize (X) takes neural network data x and returns,	
N	Vector containing the number of element sizes for each of M signals
Q	Number of samples
$T S$	Number of timesteps
M	Number of signals

If X is a matrix, N is the number of rows of X, Q is the number of columns, and both TS and M are 1 .

If x is a cell array, N is an $S x 1$ vector, where M is the number of rows in X, and $N(i)$ is the number of rows in $X\{i, 1\} . Q$ is the number of columns in the matrices in X.

Examples

This code gets the dimensions of matrix data:

```
x = [ll 2 3; 4 7 4]
[n,q,ts,s] = nnsize(x)
```

This code gets the dimensions of cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
[n,q,ts,s] = nnsize(x)
```

See Also
nndata | numelements | numsamples | numsignals | numtimesteps
Introduced in R2010b

nnstart

Neural network getting started GUI

Syntax

nnstart

Description

nnstart opens a window with launch buttons for neural network fitting, pattern recognition, clustering and time series tools. It also provides links to lists of data sets, examples, and other useful information for getting started. See specific topics on "Getting Started with Neural Network Toolbox".

```
See Also
nctool | nftool | nprtool | ntstool
```

Introduced in R2010b

nntool

Open Network/Data Manager

Syntax

nntool

Description

nntool opens the Network/Data Manager window, which allows you to import, create, use, and export neural networks and data.

Note Although it is still available, nntool is no longer recommended. Instead, use nnstart, which provides graphical interfaces that allow you to design and deploy fitting, pattern recognition, clustering, and time-series neural networks.

See Also

nnstart

Introduced before R2006a

nntraintool

Neural network training tool

Syntax

```
nntraintool
nntraintool close
nntraintool('close')
```


Description

nntraintool opens the neural network training GUI.
This function can be called to make the training GUI visible before training has occurred, after training if the window has been closed, or just to bring the training GUI to the front.

Network training functions handle all activity within the training window.
To access additional useful plots, related to the current or last network trained, during or after training, click their respective buttons in the training window.
nntraintool close or nntraintool('close') closes the training window.

Introduced in R2008a

noloop

Remove neural network open- and closed-loop feedback

Syntax

```
net = noloop(net)
```


Description

net $=$ noloop (net) takes a neural network and returns the network with open- and closed-loop feedback removed.

For outputs i, where net.outputs $\{i\} . f e e d b a c k M o d e ~ i s ~ ' o p e n ', ~ t h e ~ f e e d b a c k ~ m o d e ~ i s ~$ set to 'none', outputs\{i\}.feedbackInput is set to the empty matrix, and the associated network input is deleted.

For outputs i, where net.outputs\{i\}.feedbackMode is 'closed', the feedback mode is set to 'none'.

Examples

Here a NARX network is designed. The NARX network has a standard input and an open-loop feedback output to an associated feedback input.

```
[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X, {},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai)
```

Now the network is converted to no loop form. The output and second input are no longer associated.

```
net = noloop(net);
view(net)
```

```
[Xs,Xi,Ai] = preparets(net,X,T);
Y = net(Xs,Xi,Ai)
```


See Also

closeloop | openloop
Introduced in R2010b

normc

Normalize columns of matrix

Syntax

```
normc(M)
```


Description

normc (M) normalizes the columns of M to a length of 1 .

Examples

```
m = [1 2; 3 4];
normc(m)
ans =
\(0.3162 \quad 0.4472\)
\(0.9487 \quad 0.8944\)
```


See Also

normr

Introduced before R2006a

normprod

Normalized dot product weight function

Syntax

```
Z = normprod(W,P,FP)
dim = normprod('size',S,R,FP)
dw = normprod('dz_dw',W,P,Z,FP)
```


Description

normprod is a weight function. Weight functions apply weights to an input to get weighted inputs.
$Z=\operatorname{normprod}(W, P, F P)$ takes these inputs,

W	S-by-R weight matrix
P	R-by- Q matrix of Q input (column) vectors
FP	Row cell array of function parameters (optional, ignored)

and returns the S-by- Q matrix of normalized dot products.
dim = normprod('size', $S, R, F P$) takes the layer dimension S, input dimension R, and function parameters, and returns the weight size [S-by-R].
dw = normprod('dz_dw', W, P, Z, FP) returns the derivative of Z with respect to W .

Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input z.

```
W = rand (4,3);
P = rand (3,1);
Z = normprod(W,P)
```


Network Use

You can create a standard network that uses normprod by calling newgrnn.
To change a network so an input weight uses normprod, set net. inputWeights\{i,j\}.weightFcn to 'normprod'. For a layer weight, set net.layerWeights\{i,j\}.weightFcn to 'normprod'.

In either case, call sim to simulate the network with normprod. See newgrnn for simulation examples.

Algorithms

normprod returns the dot product normalized by the sum of the input vector elements.
$\mathrm{z}=\mathrm{w} * \mathrm{p} / \operatorname{sum}(\mathrm{p})$

See Also

dotprod

Introduced before R2006a

normr

Normalize rows of matrix

Syntax

```
normr(M)
```


Description

normr (M) normalizes the rows of M to a length of 1 .

Examples

```
m = [1 2; 3 4];
normr(m)
ans
\begin{tabular}{ll}
0.4472 & 0.8944 \\
0.6000 & 0.8000
\end{tabular}
```


See Also

normc

Introduced before R2006a

nprtool

Neural network pattern recognition tool

Syntax

nprtool

Description

nprtool opens the neural network pattern recognition tool.
For more information and an example of its usage, see "Classify Patterns with a Shallow Neural Network".

Algorithms

nprtool leads you through solving a pattern-recognition classification problem using a two-layer feed-forward patternnet network with sigmoid output neurons.

See Also

nctool |nftool | ntstool

Introduced in R2008a

ntstool

Neural network time series tool

Syntax

```
ntstool
ntstool('close')
```


Description

ntstool opens the neural network time series tool and leads you through solving a fitting problem using a two-layer feed-forward network.

For more information and an example of its usage, see "Shallow Neural Network TimeSeries Prediction and Modeling".
ntstool('close') closes the tool.

See Also
nctool |nftool | nprtool

Introduced in R2010b

num2deriv

Numeric two-point network derivative function

Syntax

num2deriv('dperf_dwb', net, X, T, Xi,Ai, EW)
num2deriv('de_dwb', net, X, T, Xi, Ai, EW)

Description

This function calculates derivatives using the two-point numeric derivative rule.
$\frac{d y}{d x}=\frac{y(x+d x)-y(x)}{d x}$
This function is much slower than the analytical (non-numerical) derivative functions, but is provided as a means of checking the analytical derivative functions. The other numerical function, num5deriv, is slower but more accurate.
num2deriv('dperf_dwb', net, X,T,Xi,Ai,EW) takes these arguments,

net	Neural network
X	Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T	Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi	Initial input delay states (optional)
Ai	Initial layer delay states (optional)
EW	Error weights (optional)

and returns the gradient of performance with respect to the network's weights and biases, where R and S are the number of input and output elements and Q is the number of samples (and N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).
num2deriv('de_dwb', net, X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the network's weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```
[x,t] = simplefit dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = num2deriv('dperf_dwb',net,x,t)
```


See Also

bttderiv | defaultderiv | fpderiv | num5deriv | staticderiv
Introduced in R2010b

num5deriv

Numeric five-point stencil neural network derivative function

Syntax

num5deriv('dperf_dwb', net, X,T,Xi,Ai,EW)
num5deriv('de_dwb', net, X,T,Xi,Ai,EW)

Description

This function calculates derivatives using the five-point numeric derivative rule.

$$
\begin{aligned}
& y_{1}=y(x+2 d x) \\
& y_{2}=y(x+d x) \\
& y_{3}=y(x-d x) \\
& y_{4}=y(x-2 d x) \\
& \frac{d y}{d x}=\frac{-y 1+8 y_{2}-8 y_{3}+y_{4}}{12 d x}
\end{aligned}
$$

This function is much slower than the analytical (non-numerical) derivative functions, but is provided as a means of checking the analytical derivative functions. The other numerical function, num2deriv, is faster but less accurate.
num5deriv('dperf_dwb', net, X,T,Xi,Ai,EW) takes these arguments,

net	Neural network
X	Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T	Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi	Initial input delay states (optional)
Ai	Initial layer delay states (optional)
EW	Error weights (optional)

and returns the gradient of performance with respect to the network's weights and biases, where R and S are the number of input and output elements and Q is the number
of samples (and N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).
num5deriv('de_dwb', net, X, T, Xi, Ai, EW) returns the Jacobian of errors with respect to the network's weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = num5deriv('dperf_dwb',net,x,t)
```


See Also

bttderiv | defaultderiv | fpderiv | num2deriv | staticderiv

Introduced in R2010b

numelements

Number of elements in neural network data

Syntax

```
numelements(x)
```


Description

numelements (x) takes neural network data x in matrix or cell array form, and returns the number of elements in each signal.

If x is a matrix the result is the number of rows of x .
If x is a cell array the result is an S -by- 1 vector, where S is the number of signals (i.e., rows of X), and each element S (i) is the number of elements in each signal i (i.e., rows of $x\{i, 1\}$).

Examples

This code calculates the number of elements represented by matrix data:

```
x = [llllllll
n = numelements(x)
```

This code calculates the number of elements represented by cell data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numelements(x)
```


See Also

catelements | getelements | nndata | nnsize| numsamples | numsignals | numtimesteps | setelements

Introduced in R2010b

numfinite

Number of finite values in neural network data

Syntax

```
numfinite(x)
```


Description

numfinite (x) takes a matrix or cell array of matrices and returns the number of finite elements in it.

Examples

```
x = [1 2; 3 NaN]
n = numfinite(x)
x = {[1 2; 3 NaN] [5 NaN; NaN 8]}
n = numfinite(x)
```


See Also

nndata|nnsize| numnan

Introduced in R2010b

numnan

Number of NaN values in neural network data

Syntax

```
numnan(x)
```


Description

numnan (x) takes a matrix or cell array of matrices and returns the number of NaN elements in it.

Examples

```
x = [1 2; 3 NaN]
n = numnan(x)
x = {[1 2; 3 NaN] [5 NaN; NaN 8]}
n = numnan(x)
```


See Also

nndata|nnsize| numnan

Introduced in R2010b

numsamples

Number of samples in neural network data

Syntax

```
numsamples(x)
```


Description

numsamples (x) takes neural network data x in matrix or cell array form, and returns the number of samples.

If x is a matrix, the result is the number of columns of x .
If x is a cell array, the result is the number of columns of the matrices in x .

Examples

This code calculates the number of samples represented by matrix data:

```
x = [ll 2 3; 4 7 4]
n = numsamples(x)
```

This code calculates the number of samples represented by cell data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numsamples(x)
```


See Also

catsamples | getsamples | nndata|nnsize| numelements | numsignals | numtimesteps | setsamples

Introduced in R2010b

numsignals

Number of signals in neural network data

Syntax

```
numsignals(x)
```


Description

numsignals (x) takes neural network data x in matrix or cell array form, and returns the number of signals.

If x is a matrix, the result is 1 .
If x is a cell array, the result is the number of rows in x .

Examples

This code calculates the number of signals represented by matrix data:

```
x = [lllllllll
n = numsignals(x)
```

This code calculates the number of signals represented by cell data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numsignals(x)
```


See Also

catsignals | getsignals | nndata| nnsize| numelements | numsamples | numtimesteps | setsignals

Introduced in R2010b

numtimesteps

Number of time steps in neural network data

Syntax

```
numtimesteps(x)
```


Description

numtimesteps (x) takes neural network data x in matrix or cell array form, and returns the number of signals.

If x is a matrix, the result is 1 .
If x is a cell array, the result is the number of columns in x .

Examples

This code calculates the number of time steps represented by matrix data:

```
x = [1 2 3; 4 7 4]
n = numtimesteps(x)
```

This code calculates the number of time steps represented by cell data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numtimesteps(x)
```


See Also

cattimesteps | gettimesteps | nndata| nnsize | numelements | numsamples | numsignals | settimesteps

Introduced in R2010b

openloop

Convert neural network closed-loop feedback to open loop

Syntax

```
net = openloop(net)
[net,xi,ai] = openloop(net,xi,ai)
```


Description

net $=$ openloop (net) takes a neural network and opens any closed-loop feedback. For each feedback output i whose property net. outputs\{i\}.feedbackMode is 'closed', it replaces its associated feedback layer weights with a new input and input weight connections. The net. outputs\{i\}.feedbackMode property is set to 'open', and the net.outputs\{i\}.feedbackInput property is set to the index of the new input.
Finally, the value of net. outputs \{i\}.feedbackDelays is subtracted from the delays of the feedback input weights (i.e., to the delays values of the replaced layer weights).
[net,xi,ai] = openloop(net,xi,ai) converts a closed-loop network and its current input delay states xi and layer delay states ai to open-loop form.

Examples

Convert NARX Network to Open-Loop Form

Here a NARX network is designed in open-loop form and then converted to closed-loop form, then converted back.

```
[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X, {},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Yopen = net(Xs,Xi,Ai)
```

```
net = closeloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yclosed = net(Xs,Xi,Ai);
net = openloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yopen = net(Xs,Xi,Ai)
```


Convert Delay States

For examples on using closeloop and openloop to implement multistep prediction, see narxnet and narnet.

See Also

closeloop | narnet | narxnet | noloop

Introduced in R2010b

patternnet

Pattern recognition network

Syntax

```
patternnet(hiddenSizes,trainFcn,performFcn)
```


Description

Pattern recognition networks are feedforward networks that can be trained to classify inputs according to target classes. The target data for pattern recognition networks should consist of vectors of all zero values except for a 1 in element i, where i is the class they are to represent.
patternnet(hiddenSizes,trainFcn, performFcn) takes these arguments,

hiddenSizes	Row vector of one or more hidden layer sizes (default = $10)$
trainFcn	Training function (default = 'trainscg')
performFcn	Performance function (default = 'crossentropy')

and returns a pattern recognition neural network.

Examples

Pattern Recognition

This example shows how to design a pattern recognition network to classify iris flowers.

```
[x,t] = iris_dataset;
net = patternnet(10);
net = train(net,x,t);
view(net)
y = net(x);
```

```
perf = perform(net,t,y);
classes = vec2ind(y);
```


See Also

competlayer | lvqnet| network| nprtool | selforgmap

Topics

"Classify Patterns with a Shallow Neural Network"
"Neural Network Object Properties"
"Neural Network Subobject Properties"

Introduced in R2010b

perceptron

Perceptron

Syntax

```
perceptron(hardlimitTF,perceptronLF)
```


Description

Perceptrons are simple single-layer binary classifiers, which divide the input space with a linear decision boundary.

Perceptrons can learn to solve a narrow range of classification problems. They were one of the first neural networks to reliably solve a given class of problem, and their advantage is a simple learning rule.
perceptron(hardlimitTF, perceptronLF) takes these arguments,

hardlimitTF	Hard limit transfer function (default = 'hardlim')
perceptronLF	Perceptron learning rule (default = 'learnp')

and returns a perceptron.
In addition to the default hard limit transfer function, perceptrons can be created with the hardlims transfer function. The other option for the perceptron learning rule is learnpn.

Note Neural Network Toolbox supports perceptrons for historical interest. For better results, you should instead use patternnet, which can solve nonlinearly separable problems. Sometimes the term "perceptrons" refers to feed-forward pattern recognition networks; but the original perceptron, described here, can solve only simple problems.

Examples

Solve Simple Classification Problem Using Perceptron

Use a perceptron to solve a simple classification logical-OR problem.

```
x = [0 0 1 1; 0 1 0 1];
t = [0 1 1 1];
net = perceptron;
net = train(net,x,t);
view(net)
y = net(x);
```


See Also

narnet | narxnet | patternnet | preparets | removedelay | timedelaynet

Introduced in R2010b

perform

Calculate network performance

Syntax

perform(net,t,y,ew)

Description

perform (net, t,y,ew) takes these arguments,

net	Neural network
t	Target data
y	Output data
ew	Error weights (default $=\{1\}$)

and returns network performance calculated according to the net. performFen and net.performParam property values.

The target and output data must have the same dimensions. The error weights may be the same dimensions as the targets, in the most general case, but may also have any of its dimension be 1 . This gives the flexibilty of defining error weights across any dimension desired.

Error weights can be defined by sample, output element, time step, or network output:

```
ew = [1.0 0.5 0.7 0.2]; % Across 4 samples
ew = [0.1; 0.5; 1.0]; % Across 3 elements
ew = {0.1 0.2 0.3 0.5 1.0}; % Across 5 timesteps
ew = {1.0; 0.5}; % Across 2 outputs
```

The may also be defined across any combination, such as across two time-series (i.e. two samples) over four timesteps.

```
ew = {[0.5 0.4],[0.3 0.5],[1.0 1.0],[0.7 0.5]};
```

In the general case, error weights may have exactly the same dimensions as targets, in which case each target value will have an associated error weight.

The default error weight treats all errors the same.
ew $=\{1\}$

Examples

Here a simple fitting problem is solved with a feed-forward network and its performance calculated.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y)
perf =
\(2.3654 e-06\)
```


See Also

```
configure| init| train
```

Introduced in R2010b

plotconfusion

Plot classification confusion matrix

Syntax

```
plotconfusion(targets,outputs)
plotconfusion(targets,outputs, name)
plotconfusion(targets1,outputs1,name1,targets2,outputs2,name2,...,ta
rgetsn,outputsn, namen)
```


Description

plotconfusion(targets, outputs) returns a confusion matrix plot for the target and output data in targets and outputs, respectively.

On the confusion matrix plot, the rows correspond to the predicted class (Output Class), and the columns show the true class (Target Class). The diagonal cells show for how many (and what percentage) of the examples the trained network correctly estimates the classes of observations. That is, it shows what percentage of the true and predicted classes match. The off diagonal cells show where the classifier has made mistakes. The column on the far right of the plot shows the accuracy for each predicted class, while the row at the bottom of the plot shows the accuracy for each true class. The cell in the bottom right of the plot shows the overall accuracy.
plotconfusion(targets, outputs, name) returns a confusion matrix plot with the title starting with name.
plotconfusion(targets1,outputs1,name1,targets2,outputs2,name2,...,ta rgetsn, outputsn, namen) returns several confusion plots in one figure, and prefixes the name arguments to the titles of the appropriate plots.

Examples

Plot Confusion Matrix

This example shows how to train a pattern recognition network and plot its accuracy.
Load the sample data.

```
[x,t] = cancer_dataset;
```

cancerInputs is a 9×699 matrix defining nine attributes of 699 biopsies.
cancerTargets is a 2 x 966 matrix where each column indicates a correct category with a one in either element 1 (benign) or element 2 (malignant). For more information on this dataset, type help cancer_dataset in the command line.

Create a pattern recognition network and train it using the sample data.

```
net = patternnet(10);
net = train(net,x,t);
```

Estimate the cancer status using the trained network, net .
$y=n e t(x) ;$
Plot the confusion matrix.

```
plotconfusion(t,y)
```


In this figure, the first two diagonal cells show the number and percentage of correct classifications by the trained network. For example 446 biopsies are correctly classifed as benign. This corresponds to 63.8% of all 699 biopsies. Similarly, 236 cases are correctly classified as malignant. This corresponds to 33.8% of all biopsies.

5 of the malignant biopsies are incorrectly classified as benign and this corresponds to 0.7% of all 699 biopsies in the data. Similarly, 12 of the benign biopsies are incorrectly classified as malignant and this corresponds to 1.7% of all data.

Out of 451 benign predictions, 98.9% are correct and 1.1% are wrong. Out of 248 malignant predictions, 95.2% are correct and 4.8% are wrong. Out of 458 benign cases, 97.4% are correctly predicted as benign and 2.6% are predicted as malignant. Out of 241 malignant cases, 97.9% are correctly classified as malignant and 2.1% are classified as benign.

Overall, 97.6% of the predictions are correct and 2.4% are wrong classifications.

Input Arguments

targets - True class labels

N-by-M matrix
True class labels, where N is the number of classes and M is the number of examples. Each column of the matrix must be in the 1 -of-N form indicating which class that particular example belongs to. That is, in each column, a single element is 1 to indicate the correct class, and all other elements are 0.

Data Types: single | double

outputs - Class estimates from a neural network that performs classification

 N-by-M matrixClass estimates from a neural network that performs classification, specified as an N-byM matrix, where N is the number of classes and M is the number of examples. Each column of the matrix can either be in the 1 -of- N form indicating which class that particular example belongs to, or can contain the probabilities, where each column sums to 1 .

Data Types: single | double

name - Name of the confusion matrix

character array
Name of the confusion matrix, specified as a character array. The specified name prefixes the confusion matrix plot title as name Confusion Matrix.

Data Types: char

See Also

plotroc

Introduced in R2008a

plotep

Plot weight-bias position on error surface

Syntax

```
H = plotep(W,B,E)
H = plotep(W,B,E,H)
```


Description

plotep is used to show network learning on a plot created by plotes.
$H=p l o t e p(W, B, E)$ takes these arguments,

W	Current weight value
B	Current bias value
E	Current error

and returns a cell array H , containing information for continuing the plot.
$H=p l o t e p(W, B, E, H)$ continues plotting using the cell array H returned by the last call to plotep.

H contains handles to dots plotted on the error surface, so they can be deleted next time; as well as points on the error contour, so they can be connected.

See Also

errsurf | plotes

Introduced before R2006a

ploterrcorr

Plot autocorrelation of error time series

Syntax

```
ploterrcorr(error)
ploterrcorr(errors,'outputIndex',outIdx)
```


Description

ploterrcorr (error) takes an error time series and plots the autocorrelation of errors across varying lags.
ploterrcorr(errors,'outputIndex',outIdx) uses the optional property name/ value pair to define which output error autocorrelation is plotted. The default is 1 .

Examples

Plot Autocorrelation of Errors

Here a NARX network is used to solve a time series problem.

```
[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
E = gsubtract(Ts,Y);
ploterrcorr(E)
```


See Also

plotinerrcorr | plotresponse

Introduced in R2010b

ploterrhist

Plot error histogram

Syntax

```
ploterrhist(e)
ploterrhist(e1,'name1',e2,'name2',...)
ploterrhist(...,'bins',bins)
```


Description

ploterrhist(e) plots a histogram of error values e.
ploterrhist (e1,'name1',e2,'name2',...) takes any number of errors and names and plots each pair.
ploterrhist(...,'bins',bins) takes an optional property name/value pair which defines the number of bins to use in the histogram plot. The default is 20.

Examples

Plot Histogram of Error Values

Here a feedforward network is used to solve a simple fitting problem:

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
e = t - y;
ploterrhist(e,'bins',30)
```


Error Histogram with 30 Bins

See Also

plotconfusion | ploterrcorr | plotinerrcorr

Introduced in R2010b

plotes

Plot error surface of single-input neuron

Syntax

```
plotes(WV,BV,ES,V)
```


Description

plotes (WV,BV, ES, V) takes these arguments,

WV	1 -by-N row vector of values of W
BV	1 -by-M row vector of values of B
ES	M-by-N matrix of error vectors
V	View (default $=[-37.5,30])$

and plots the error surface with a contour underneath.
Calculate the error surface ES with errsurf.

Examples

Plot Error Surface of Single-Input Neuron

```
p = [3 2];
t = [0.4 0.8];
wv = -4:0.4:4;
bv = wv;
ES = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,ES,[60 30])
```


See Also

errsurf

Introduced before R2006a

plotfit

Plot function fit

Syntax

```
plotfit(net,inputs,targets)
plotfit(targets1,inputs1,'name1',...)
```


Description

plotfit(net,inputs,targets) plots the output function of a network across the range of the inputs inputs and also plots target targets and output data points associated with values in inputs. Error bars show the difference between outputs and targets.

The plot appears only for networks with one input.
Only the first output/targets appear if the network has more than one output.
plotfit(targets1,inputs1,'name1',...) displays a series of plots.

Examples

Plot Output and Target Values

This example shows how to use a feed-forward network to solve a simple fitting problem.

```
[x,t] = simplefit dataset;
net = feedforwardnet(10);
net = train(net,x,t);
plotfit(net,x,t)
```


See Also

plottrainstate

Introduced in R2008a

plotinerrcorr

Plot input to error time-series cross-correlation

Syntax

```
plotinerrcorr(x,e)
plotinerrcorr(...,'inputIndex',inputIndex)
plotinerrcorr(...,'outputIndex',outputIndex)
```


Description

plotinerrcorr (x,e) takes an input time series x and an error time series e, and plots the cross-correlation of inputs to errors across varying lags.
plotinerrcorr(...,'inputIndex',inputIndex) optionally defines which input element is being correlated and plotted. The default is 1 .
plotinerrcorr(...,'outputIndex',outputIndex) optionally defines which error element is being correlated and plotted. The default is 1 .

Examples

Plot Cross-Correlation of Inputs to Errors

Here a NARX network is used to solve a time series problem.

```
[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
E = gsubtract(Ts,Y);
plotinerrcorr(Xs,E)
```

Correlation between Input 1 and Error 1

See Also
ploterrcorr | ploterrhist | plotresponse
Introduced in R2010b

plotpc

Plot classification line on perceptron vector plot

Syntax

```
plotpc(W,B)
plotpc(W,B,H)
```


Description

plotpc (W, B) takes these inputs,

W	S-by-R weight matrix (R must be 3 or less)
B	S-by-1 bias vector

and returns a handle to a plotted classification line.
plotpc (W, B, H) takes an additional input,

```
H
```

and deletes the last line before plotting the new one.
This function does not change the current axis and is intended to be called after plotpv.

Examples

Plot Classification Line

The code below defines and plots the inputs and targets for a perceptron:

```
p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)
```


The following code creates a perceptron, assigns values to its weights and biases, and plots the resulting classification line.

```
net = perceptron;
net = configure(net,p,t);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})
```


See Also

plotpv

Introduced before R2006a

plotperform

Plot network performance

Syntax

```
plotperform(TR)
```


Description

plotperform(TR) plots error vs. epoch for the training, validation, and test performances of the training record TR returned by the function train.

Examples

Plot Validation Performance of Network

This example shows how to use plotperform to obtain a plot of training record error values against the number of training epochs.

```
[x,t] = bodyfat_dataset;
net = feedforwardnet(10);
[net,tr] = train(net,x,t);
plotperform(tr)
```


Generally, the error reduces after more epochs of training, but might start to increase on the validation data set as the network starts overfitting the training data. In the default setup, the training stops after six consecutive increases in validation error, and the best performance is taken from the epoch with the lowest validation error.

See Also

plottrainstate

Introduced in R2008a

plotpv

Plot perceptron input/target vectors

Syntax

```
plotpv(P,T)
plotpv(P,T,V)
```


Description

plotpv (P, T) takes these inputs,

P	R-by-Q matrix of input vectors (R must be 3 or less)
T	S-by-Q matrix of binary target vectors (S must be 3 or less)

and plots column vectors in P with markers based on T.
plotpv ($\mathrm{P}, \mathrm{T}, \mathrm{V}$) takes an additional input,
V \quad Graph limits = [x_min x_max y_min y_max]
and plots the column vectors with limits set by V .

Examples

Plot Inputs and Targets for Perceptron

This example shows how to define and plot the inputs and targets for a perceptron.

```
p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)
```


See Also

plotpc

Introduced before R2006a

plotregression

Plot linear regression

Syntax

```
plotregression(targets,outputs)
plotregression(targs1,outs1,'name1',targs2,outs2,'name2',...)
```


Description

plotregression(targets, outputs) plots the linear regression of targets relative to outputs.
plotregression(targs1,outs1,'name1',targs2,outs2,'name2',...) generates multiple plots.

Examples

Plot Linear Regression

```
[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
plotregression(t,y,'Regression')
```


See Also

plottrainstate

Introduced in R2008a

plotresponse

Plot dynamic network time series response

Syntax

```
plotresponse(t,y)
plotresponse(t1,'name',t2,'name2',...,y)
plotresponse(...,'outputIndex',outputIndex)
```


Description

plotresponse (t, y) takes a target time series t and an output time series y, and plots them on the same axis showing the errors between them.
plotresponse(t1,'name',t2,'name2',...,y) takes multiple target/name pairs, typically defining training, validation and testing targets, and the output. It plots the responses with colors indicating the different target sets.
plotresponse(...,'outputIndex',outputIndex) optionally defines which error element is being correlated and plotted. The default is 1 .

Examples

Plot Target and Output Time Series Data

This example shows how to use a NARX network to solve a time series problem.

```
[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X, {},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
plotresponse(Ts,Y)
```

Response of Output Element 1 for Time-Series 1

See Also

ploterrcorr | ploterrhist | plotinerrcorr

Introduced in R2010b

plotroc

Plot receiver operating characteristic

Syntax

```
plotroc(targets,outputs)
plotroc(targets1,outputs2,'name1',...)
```


Description

plotroc (targets, outputs) plots the receiver operating characteristic for each output class. The more each curve hugs the left and top edges of the plot, the better the classification.
plotroc (targets1,outputs2,'name1',...) generates multiple plots.

Examples

Plot Receiver Operating Characteristic

```
load simplecluster dataset
net = patternnet(20);
net = train(net,simpleclusterInputs,simpleclusterTargets);
simpleclusterOutputs = sim(net,simpleclusterInputs);
plotroc(simpleclusterTargets,simpleclusterOutputs)
```


See Also

roc

Introduced in R2008a

plotsom

Plot self-organizing map

Syntax

```
plotsom(pos)
plotsom(W,D,ND)
```


Description

plotsom(pos) takes one argument,

POS	N-by-S matrix of S N-dimension neural positions

and plots the neuron positions with red dots, linking the neurons within a Euclidean distance of 1 .
plotsom (W, D, ND) takes three arguments,

W	S-by-R weight matrix
D	S-by-S distance matrix
ND	Neighborhood distance (default = 1)

and plots the neuron's weight vectors with connections between weight vectors whose neurons are within a distance of 1 .

Examples

Plot Self-Organizing Maps

These examples generate plots of various layer topologies.

```
pos = hextop([5 6]);
plotsom(pos)
```


pos = gridtop([4 5]);
plotsom(pos)

pos = gridtop([4 5 2 $])$;
plotsom(pos)


```
pos = hextop([4 4 3]);
plotsom(pos)
```


See plotsompos for an example of plotting a layer's weight vectors with the input vectors they map.

See Also

learnsom

Introduced before R2006a

plotsomhits

Plot self-organizing map sample hits

Syntax

```
plotsomhits(net,inputs)
```


Description

plotsomhits (net, inputs) plots a SOM layer, with each neuron showing the number of input vectors that it classifies. The relative number of vectors for each neuron is shown via the size of a colored patch.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples

Plot SOM Sample Hits

```
x = iris dataset;
net = selforgmap([5 5]);
net = train(net,x);
plotsomhits(net,x)
```


See Also

plotsomplanes

Introduced in R2008a

plotsomnc

Plot self-organizing map neighbor connections

Syntax

```
plotsomnc(net)
```


Description

plotsomnc (net) plots a SOM layer showing neurons as gray-blue patches and their direct neighbor relations with red lines.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples

Plot SOM Neighbor Connections

```
x = iris_dataset;
net = selforgmap([8 8]);
net = train(net,x);
plotsomnc(net)
```


SOM Neighbor Connections

See Also

plotsomhits | plotsomnd | plotsomplanes

Introduced in R2008a

plotsomnd

Plot self-organizing map neighbor distances

Syntax

```
plotsomnd(net)
```


Description

plotsomnd (net) plots a SOM layer showing neurons as gray-blue patches and their direct neighbor relations with red lines. The neighbor patches are colored from black to yellow to show how close each neuron's weight vector is to its neighbors.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples

Plot SOM Neighbor Distances

```
x = iris dataset;
net = selforgmap([5 5]);
net = train(net,x);
plotsomnd(net)
```


See Also

plotsomhits | plotsomnc | plotsomplanes

Introduced in R2008a

plotsomplanes

Plot self-organizing map weight planes

Syntax

```
plotsomplanes(net)
```


Description

plotsomplanes (net) generates a set of subplots. Each ith subplot shows the weights from the ith input to the layer's neurons, with the most negative connections shown as blue, zero connections as black, and the strongest positive connections as red.

The plot is only shown for layers organized in one or two dimensions.
This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

This function can also be called with standardized plotting function arguments used by the function train.

Examples

Plot SOM Weight Planes

```
x = iris dataset;
net = selforgmap([5 5]);
net = train(net,x);
plotsomplanes(net)
```


Weights from Input 3

Weights from Input 4

See Also
plotsomhits | plotsomnc | plotsomnd
Introduced in R2008a

plotsompos

Plot self-organizing map weight positions

Syntax

```
plotsompos(net)
plotsompos(net,inputs)
```


Description

plotsompos (net) plots the input vectors as green dots and shows how the SOM classifies the input space by showing blue-gray dots for each neuron's weight vector and connecting neighboring neurons with red lines.
plotsompos(net,inputs) plots the input data alongside the weights.

Examples

Plot SOM Weight Positions

```
x = iris_dataset;
net = selforgmap([10 10]);
net = train(net,x);
plotsompos(net,x)
```


See Also

plotsomhits | plotsomnd | plotsomplanes

Introduced in R2008a

plotsomtop

Plot self-organizing map topology

Syntax

```
plotsomtop(net)
```


Description

plotsomtop (net) plots the topology of a SOM layer.
This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples

Plot SOM Topology

```
x = iris_dataset;
net = selforgmap([8 8]);
plotsomtop(net)
```


See Also

plotsomhits | plotsomnd | plotsomplanes

Introduced in R2008a

plottrainstate

Plot training state values

Syntax

```
plottrainstate(tr)
```


Description

plottrainstate (tr) plots the training state from a training record tr returned by train.

Examples

Plot Training State Values

This example shows how to plot training state values using plottrainstate.

```
[x, t] = bodyfat_dataset;
net = feedforwardnet(10);
[net, tr] = train(net, x, t);
plottrainstate(tr)
```


See Also

plotfit | plotperform | plotregression

Introduced in R2008a

plotv

Plot vectors as lines from origin

Syntax

```
plotv(M,T)
```


Description

plotv (M, T) takes two inputs,

M	R-by- Q matrix of Q column vectors with R elements
T	The line plotting type (optional; default $=^{\prime}-'^{\prime}$)

and plots the column vectors of M .
R must be 2 or greater. If R is greater than 2, only the first two rows of M are used for the plot.

Examples

Plot Vectors

This example shows how to plot three 2 -element vectors.

```
M = [l-0.4 0.7 0.2 ; ...
    -0.5 0.1 0.5];
plotv(M,'-')
```


Introduced before R2006a

plotvec

Plot vectors with different colors

Syntax

```
plotvec(X,C,M)
```


Description

plotvec ($\mathrm{X}, \mathrm{C}, \mathrm{M}$) takes these inputs,

X	Matrix of (column) vectors
C	Row vector of color coordinates
M	Marker (default $='+{ }^{\prime}$)

and plots each ith vector in X with a marker M , using the ith value in C as the color coordinate.
plotvec (X) only takes a matrix X and plots each ith vector in X with marker ' + ' using the index i as the color coordinate.

Examples

Plot Vectors with Different Colors

This example shows how to plot four 2 -element vectors.

```
x = [ [ 0 1 0.5 0.7 ; ...
    -1 2 0.5 0.1];
c = [lllll
plotvec(x,c)
```


Introduced before R2006a

plotwb

Plot Hinton diagram of weight and bias values

Syntax

```
plotwb (net)
plotwb (IW,LW,B)
plotwb(...,'toLayers',toLayers)
plotwb(...,'fromInputs',fromInputs)
plotwb(...,'fromLayers',fromLayers)
plotwb(...,'root',root)
```


Description

plotwb (net) takes a neural network and plots all its weights and biases.
plotwb (IW, LW, B) takes a neural networks input weights, layer weights and biases and plots them.
plotwb (...,'toLayers',toLayers) optionally defines which destination layers whose input weights, layer weights and biases will be plotted.
plotwb (...,'fromInputs',fromInputs) optionally defines which inputs will have their weights plotted.
plotwb (...,'fromLayers',fromLayers) optionally defines which layers will have weights coming from them plotted.
plotwb (...,'root', root) optionally defines the root used to scale the weight/bias patch sizes. The default is 2 , which makes the 2 -dimensional patch sizes scale directly with absolute weight and bias sizes. Larger values of root magnify the relative patch sizes of smaller weights and biases, making differences in smaller values easier to see.

Examples

Plot Weights and Biases

Here a cascade-forward network is configured for particular data and its weights and biases are plotted in several ways.

```
[x,t] = simplefit_dataset;
net = cascadeforwardnet([15 5]);
net = configure(net,x,t);
plotwb(net)
```

From Source: Input, Layer or Bias


```
plotwb (net,'root',3)
```

From Source: Input, Layer or Bias

plotwb (net,'root', 4)

From Source: Input, Layer or Bias

plotwb (net,'toLayers', 2)

[^1]From Source: Input, Layer or Bias

[^2]From Source: Input, Layer or Bias

Elements within Sources

See Also
plotsomplanes
Introduced in R2010b

pnormc

Pseudonormalize columns of matrix

Syntax

```
pnormc(X,R)
```


Description

pnormc (X, R) takes these arguments,

X	M-by-N matrix
R	(Optional) radius to normalize columns to (default $=1$)

and returns X with an additional row of elements, which results in new column vector lengths of R.

Caution For this function to work properly, the columns of X must originally have vector lengths less than R.

Examples

```
x = [0.1 0.6; 0.3 0.1];
y = pnormc(x)
```


See Also

normc | normr

Introduced before R2006a

poslin

Positive linear transfer function

Graph and Symbol

$a=\operatorname{poslin}(n)$
Positive Linear Transfer Function

Syntax

```
A = poslin(N,FP)
info = poslin('code')
```


Description

poslin is a neural transfer function. Transfer functions calculate a layer's output from its net input.
A $=$ poslin(N,FP) takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, the $S-b y-Q$ matrix of N's elements clipped to [0, inf].
info = poslin('code') returns information about this function. The following codes are supported:
poslin('name') returns the name of this function.

```
poslin('output',FP) returns the [min max] output range.
poslin('active',FP) returns the [min max] active range.
poslin('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-
by-Q.
poslin('fpnames') returns the names of the function parameters.
poslin('fpdefaults') returns the default function parameters.
```


Examples

Here is the code to create a plot of the poslin transfer function.

```
n = -5:0.1:5;
a = poslin(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'poslin';
```


Network Use

To change a network so that a layer uses poslin, set net.layers\{i\}.transferFcn to 'poslin'.

Call sim to simulate the network with poslin.

Algorithms

The transfer function poslin returns the output n if n is greater than or equal to zero and 0 if n is less than or equal to zero.

```
poslin(n) = n, if n >= 0
    =0, if n <= 0
```

See Also
purelin | satlin | satlins | sim
Introduced before R2006a

preparets

Prepare input and target time series data for network simulation or training

Syntax

```
[Xs,Xi,Ai,Ts,EWs,shift] = preparets(net,Xnf,Tnf,Tf,EW)
```


Description

This function simplifies the normally complex and error prone task of reformatting input and target time series. It automatically shifts input and target time series as many steps as are needed to fill the initial input and layer delay states. If the network has open-loop feedback, then it copies feedback targets into the inputs as needed to define the open-loop inputs.

Each time a new network is designed, with different numbers of delays or feedback settings, preparets can reformat input and target data accordingly. Also, each time a network is transformed with openloop, closeloop, removedelay or adddelay, this function can reformat the data accordingly.
[Xs,Xi,Ai,Ts,EWs,shift] = preparets(net, Xnf,Tnf,Tf,EW) takes these arguments,

net	Neural network
Xnf	Non-feedback inputs
Tnf	Non-feedback targets
Tf	Feedback targets
EW	Error weights (default $=\{1\}$)

and returns,

Xs	Shifted inputs
Xi	Initial input delay states
Ai	Initial layer delay states

Ts	Shifted targets
EWs	Shifted error weights
shift	The number of timesteps truncated from the front of X and T in order to properly fill Xi and Ai.

Examples

Prepare Data for Open- and Closed-Loop Networks

Here a time-delay network with 20 hidden neurons is created, trained and simulated.

```
[X,T] = simpleseries_dataset;
net = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts);
view(net)
Y = net(Xs,Xi,Ai);
```


Here a NARX network is designed. The NARX network has a standard input and an open-loop feedback output to an associated feedback input.

```
[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X, {},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
y = net(Xs,Xi,Ai);
```


Now the network is converted to closed loop, and the data is reformatted to simulate the network's closed-loop response.

```
net = closeloop(net);
view (net)
[Xs,Xi,Ai] = preparets(net,X,{},T);
y = net(Xs,Xi,Ai);
```


See Also

adddelay | closeloop | narnet | narxnet | openloop | removedelay | timedelaynet

Introduced in R2010b

processpca

Process columns of matrix with principal component analysis

Syntax

```
[Y,PS] = processpca(X,maxfrac)
[Y,PS] = processpca(X,FP)
Y = processpca('apply',X,PS)
X = processpca('reverse',Y,PS)
name = processpca('name')
fp = processpca('pdefaults')
names = processpca('pdesc')
processpca('pcheck',fp);
```


Description

processpca processes matrices using principal component analysis so that each row is uncorrelated, the rows are in the order of the amount they contribute to total variation, and rows whose contribution to total variation are less than maxfrac are removed.

$[\mathrm{Y}, \mathrm{PS}]=\operatorname{processpca}(\mathrm{X}, \operatorname{maxfrac})$ takes X and an optional parameter,	
X	N-by-Q matrix
maxfrac	Maximum fraction of variance for removed rows (default is 0)

and returns

Y	M-by- 2 matrix with $N-M$ rows deleted
PS	Process settings that allow consistent processing of values

[Y, PS] = processpca(X,FP) takes parameters as a struct: FP.maxfrac.
Y = processpca('apply',X,PS) returns Y, given X and settings PS.
X = processpca('reverse', Y,PS) returns X, given Y and settings PS.
name = processpca('name') returns the name of this process method.
fp = processpca('pdefaults') returns default process parameter structure.
names = processpca('pdesc') returns the process parameter descriptions.
processpca('pcheck',fp); throws an error if any parameter is illegal.

Examples

Here is how to format a matrix with an independent row, a correlated row, and a completely redundant row so that its rows are uncorrelated and the redundant row is dropped.

```
x1_independent = rand(1,5)
x1_correlated = rand(1,5) + x1_independent;
x1_redundant = x1_independent + xl_correlated
x1 = [x1_independent; x1_correlated; x1_redundant]
[y1,ps] = processpca(x1)
```

Next, apply the same processing settings to new values.

```
x2_independent = rand(1,5)
x2_correlated = rand(1,5) + x1_independent;
x2_redundant = x1_independent + x1_correlated
x2 = [x2_independent; x2_correlated; x2_redundant];
y2 = processpca('apply',x2,ps)
```

Reverse the processing of y 1 to get x 1 again.

```
x1_again = processpca('reverse',y1,ps)
```


Definitions

Reduce Input Dimensionality Using processpca

In some situations, the dimension of the input vector is large, but the components of the vectors are highly correlated (redundant). It is useful in this situation to reduce the dimension of the input vectors. An effective procedure for performing this operation is
principal component analysis. This technique has three effects: it orthogonalizes the components of the input vectors (so that they are uncorrelated with each other), it orders the resulting orthogonal components (principal components) so that those with the largest variation come first, and it eliminates those components that contribute the least to the variation in the data set. The following code illustrates the use of processpca, which performs a principal-component analysis using the processing setting maxfrac of 0.02.
[pn,ps1] = mapstd(p);
[ptrans,ps2] = processpca(pn,0.02);
The input vectors are first normalized, using mapstd, so that they have zero mean and unity variance. This is a standard procedure when using principal components. In this example, the second argument passed to processpca is 0.02 . This means that processpca eliminates those principal components that contribute less than 2% to the total variation in the data set. The matrix ptrans contains the transformed input vectors. The settings structure ps 2 contains the principal component transformation matrix. After the network has been trained, these settings should be used to transform any future inputs that are applied to the network. It effectively becomes a part of the network, just like the network weights and biases. If you multiply the normalized input vectors pn by the transformation matrix transMat, you obtain the transformed input vectors ptrans.

If processpca is used to preprocess the training set data, then whenever the trained network is used with new inputs, you should preprocess them with the transformation matrix that was computed for the training set, using ps2. The following code applies a new set of inputs to a network already trained.

```
pnewn = mapstd('apply',pnew,ps1);
pnewtrans = processpca('apply',pnewn,ps2);
a = sim(net,pnewtrans);
```

Principal component analysis is not reliably reversible. Therefore it is only recommended for input processing. Outputs require reversible processing functions.

Principal component analysis is not part of the default processing for feedforwardnet. You can add this with the following command:

```
net.inputs{1}.processFcns{end+1} = 'processpca';
```


Algorithms

Values in rows whose elements are not all the same value are set to $y=2 *(x-m i n x) /(m a x x-m i n x)-1 ;$

Values in rows with all the same value are set to 0 .

See Also
fixunknowns | mapminmax | mapstd

Introduced in R2006a

prune

Delete neural inputs, layers, and outputs with sizes of zero

Syntax

```
[net,pi,pl,po] = prune(net)
```


Description

This function removes zero-sized inputs, layers, and outputs from a network. This leaves a network which may have fewer inputs and outputs, but which implements the same operations, as zero-sized inputs and outputs do not convey any information.

One use for this simplification is to prepare a network with zero sized subobjects for Simulink, where zero sized signals are not supported.

The companion function prunedata can prune data to remain consistent with the transformed network.
$[$ net,pi,pl,po] = prune (net) takes a neural network and returns

net	The same network with zero-sized subobjects removed
pi	Indices of pruned inputs
pl	Indices of pruned layers
po	Indices of pruned outputs

Examples

Here a NARX dynamic network is created which has one external input and a second input which feeds back from the output.

```
net = narxnet(20);
view(net)
```

The network is then trained on a single random time-series problem with 50 timesteps. The external input happens to have no elements.

```
X = nndata(0,1,50);
T = nndata(1,1,50);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts);
```

The network and data are then pruned before generating a Simulink diagram and initializing its input and layer states.

```
[net2,pi,pl,po] = prune(net);
view(net)
[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts)
[sysName,netName] = gensim(net);
setsiminit(sysName,netName,Xi2,Ai2)
```


See Also

gensim | prunedata

Introduced in R2010b

prunedata

Prune data for consistency with pruned network

Syntax

[Xp,Xip,Aip,Tp] = prunedata(pi,pl,po,X,Xi,Ai,T)

Description

This function prunes data to be consistent with a network whose zero-sized inputs, layers, and outputs have been removed with prune.

One use for this simplification is to prepare a network with zero-sized subobjects for Simulink, where zero-sized signals are not supported.

$[\mathrm{Xp}, \mathrm{Xip}, \mathrm{Aip}, \mathrm{Tp}]=\mathrm{prunedata}(\mathrm{pi}, \mathrm{pl}, \mathrm{po}, \mathrm{X}, \mathrm{Xi}, \mathrm{Ai}, \mathrm{T})$ takes these arguments,	
pi	Indices of pruned inputs
pl	Indices of pruned layers
po	Indices of pruned outputs
X	Input data
Xi	Initial input delay states
Ai	Initial layer delay states
T	Target data

and returns the pruned inputs, input and layer delay states, and targets.

Examples

Here a NARX dynamic network is created which has one external input and a second input which feeds back from the output.

```
net = narxnet(20);
view(net)
```

The network is then trained on a single random time-series problem with 50 timesteps. The external input happens to have no elements.

```
X = nndata(0,1,50);
T = nndata(1, 1,50);
[Xs,Xi,Ai,Ts] = preparets(net,X, {},T);
net = train(net,Xs,Ts);
```

The network and data are then pruned before generating a Simulink diagram and initializing its input and layer states.

```
[net2,pi,pl,po] = prune(net);
view(net)
[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts)
[sysName,netName] = gensim(net);
setsiminit(sysName,netName,Xi2,Ai2)
```


See Also

gensim | prune

Introduced in R2010b

purelin

Linear transfer function

Graph and Symbol

$a=\operatorname{purelin}(n)$
Linear Transfer Function

Syntax

```
A = purelin(N,FP)
info = purelin('code')
```


Description

purelin is a neural transfer function. Transfer functions calculate a layer's output from its net input.
A = purelin(N,FP) takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A , an S -by- Q matrix equal to N .
info = purelin('code') returns useful information for each supported code string: purelin('name') returns the name of this function.

```
purelin('output',FP) returns the [min max] output range.
purelin('active',FP) returns the [min max] active input range.
purelin('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or
s-by-Q.
purelin('fpnames') returns the names of the function parameters.
purelin('fpdefaults') returns the default function parameters.
```


Examples

Here is the code to create a plot of the purelin transfer function.

```
n = -5:0.1:5;
a = purelin(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'purelin';
```


Algorithms

```
a = purelin(n) = n
```


See Also

satlin | satlins | sim

Introduced before R2006a

quant

Discretize values as multiples of quantity

Syntax

quant (X, Q)

Description

quant (X, Q) takes two inputs,

X	Matrix, vector, or scalar
Q	Minimum value

and returns values from X rounded to nearest multiple of Q .

Examples

```
x = [1.333 4.756 -3.897];
y = quant(x,0.1)
```

Introduced before R2006a

radbas

Radial basis transfer function

Graph and Symbol

Radial Basis Function

Syntax

```
A = radbas(N,FP)
```


Description

radbas is a neural transfer function. Transfer functions calculate a layer's output from its net input.
$A=\operatorname{radbas}(N, F P)$ takes one or two inputs,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the radial basis function applied to each element of N .

Examples

Here you create a plot of the radbas transfer function.

```
n = -5:0.1:5;
a = radbas(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'radbas';
```


Algorithms

$\mathrm{a}=\operatorname{radbas}(\mathrm{n})=\exp \left(-\mathrm{n}^{\wedge} 2\right)$

See Also

radbasn | sim| tribas

Introduced before R2006a

radbasn

Normalized radial basis transfer function

Graph and Symbol

Radial Basis Function

Syntax

$\mathrm{A}=$ radbasn (N,FP)

Description

radbasn is a neural transfer function. Transfer functions calculate a layer's output from its net input. This function is equivalent to radbas, except that output vectors are normalized by dividing by the sum of the pre-normalized values.
A $=$ radbasn (N, FP) takes one or two inputs,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the radial basis function applied to each element of N .

Examples

Here six random 3 -element vectors are passed through the radial basis transform and normalized.
$\mathrm{n}=\operatorname{rand}(3,6)$
$a=r a d b a s n(n)$
Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'radbasn';
```


Algorithms

```
a = radbasn (n) = exp(-n^2) / sum(exp(-n^2))
```


See Also

radbas | sim | tribas

Introduced in R2010b

randnc

Normalized column weight initialization function

Syntax

```
W = randnc(S,PR)
```


Description

randnc is a weight initialization function.
$\mathrm{W}=$ randnc (S, PR) takes two inputs,

S	Number of rows (neurons)
PR	R-by-2 matrix of input value ranges = [Pmin Pmax $]$

and returns an S-by-R random matrix with normalized columns.
You can also call this in the form randnc (S, R).

Examples

A random matrix of four normalized three-element columns is generated:

```
M = randnc(3,4)
M =
\begin{tabular}{rrrr}
-0.6007 & -0.4715 & -0.2724 & 0.5596 \\
-0.7628 & -0.6967 & -0.9172 & 0.7819 \\
-0.2395 & 0.5406 & -0.2907 & 0.2747
\end{tabular}
```


See Also

randnr

Introduced before R2006a

randnr

Normalized row weight initialization function

Syntax

```
W = randnr (S,PR)
```


Description

randnr is a weight initialization function.
W = randnr (S, PR) takes two inputs,

S	Number of rows (neurons)
$P R$	R-by-2 matrix of input value ranges $=[$ Pmin Pmax $]$

and returns an S-by-R random matrix with normalized rows.
You can also call this in the form randnr (S, R).

Examples

A matrix of three normalized four-element rows is generated:

```
M = randnr(3,4)
M =
\begin{tabular}{rrrr}
0.9713 & 0.0800 & -0.1838 & -0.1282 \\
0.8228 & 0.0338 & 0.1797 & 0.5381 \\
-0.3042 & -0.5725 & 0.5436 & 0.5331
\end{tabular}
```


See Also

randnc

Introduced before R2006a

rands

Symmetric random weight/bias initialization function

Syntax

```
W = rands (S,PR)
M = rands(S,R)
v}= rands(S
```


Description

rands is a weight/bias initialization function.
$\mathrm{W}=$ rands $(\mathrm{S}, \mathrm{PR})$ takes

S	Number of neurons
$P R$	R-by-2 matrix of R input ranges

and returns an S-by-R weight matrix of random values between -1 and 1 .
$M=$ rands (S, R) returns an S-by-R matrix of random values. $v=$ rands (S) returns an S-by-1 vector of random values.

Examples

Here, three sets of random values are generated with rands.

```
rands(4,[0 1; -2 2])
rands(4)
rands (2,3)
```


Network Use

To prepare the weights and the bias of layer i of a custom network to be initialized with rands,

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes initlay's default parameters.)
2 Set net.layers\{i\}.initFcn to 'initwb'.
3 Set each net.inputWeights\{i,j\}.initFcn to 'rands'.
4 Set each net.layerWeights\{i,j\}.initFcn to 'rands'.
5 Set each net.biases\{i\}.initFcn to 'rands'.
To initialize the network, call init.

See Also

init | initlay | initwb | randnc | randnr | randsmall

Introduced before R2006a

randsmall

Small random weight/bias initialization function

Syntax

```
W = randsmall(S,PR)
M = rands(S,R)
v = rands(S)
```


Description

randsmall is a weight/bias initialization function.
$\mathrm{W}=$ randsmall (S, PR) takes

S	Number of neurons
$P R$	R-by-2 matrix of R input ranges

and returns an S-by-R weight matrix of small random values between -0.1 and 0.1.
$M=$ rands (S, R) returns an S-by-R matrix of random values. $v=$ rands (S) returns an S-by-1 vector of random values.

Examples

Here three sets of random values are generated with rands.

```
randsmall(4,[0 1; -2 2])
randsmall(4)
randsmall(2,3)
```


Network Use

To prepare the weights and the bias of layer i of a custom network to be initialized with rands,

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes initlay's default parameters.)
2 Set net.layers\{i\}.initFcn to 'initwb'.
3 Set each net.inputWeights\{i,j\}.initFcn to 'randsmall'.
4 Set each net.layerWeights\{i,j\}.initFcn to 'randsmall'.
5 Set each net.biases\{i\}.initFcn to 'randsmall'.
To initialize the network, call init.

See Also

init | initlay | initwb | randnc | randnr | rands

Introduced in R2010b

randtop

Random layer topology function

Syntax

```
pos = randtop(dimensions)
```


Description

randtop calculates the neuron positions for layers whose neurons are arranged in an N dimensional random pattern.
pos = randtop(dimensions) takes one argument:
dimensions Row vector of dimension sizes
and returns an N -by- S matrix of N coordinate vectors, where N is the number of dimensions and S is the product of dimensions.

Examples

Display Layer with Random Pattern

This shows how to display a two-dimensional layer with neurons arranged in a random pattern.

```
pos = randtop([18 12]);
plotsom(pos)
```


See Also

gridtop | hextop | tritop
Introduced before R2006a

regression

Linear regression

Syntax

```
[r,m,b] = regression(t,y)
[r,m,b] = regression(t,y,'one')
```


Description

$[r, m, b]=$ regression (t, y) takes these arguments,

t	Target matrix or cell array data with a total of N matrix rows
y	Output matrix or cell array data of the same size

and returns these outputs,

r	Regression values for each of the N matrix rows
m	Slope of regression fit for each of the N matrix rows
b	Offset of regression fit for each of the N matrix rows

[r,m,b] = regression(t,y,'one') combines all matrix rows before regressing, and returns single scalar regression, slope, and offset values.

Examples

Fit Regression Model and Plot Fitted Values versus Targets

Train a feedforward network, then calculate and plot the regression between its targets and outputs.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
```

```
y = net(x);
[r,m,b] = regression(t,y)
r=1.0000
m = 1.0000
b}=1.0878e-0
plotregression(t,y)
```


See Also

confusion | plotregression

Introduced in R2010b

removeconstantrows

Process matrices by removing rows with constant values

Syntax

```
[Y,PS] = removeconstantrows(X,max_range)
[Y,PS] = removeconstantrows(X,FP)
Y = removeconstantrows('apply',X,PS)
X = removeconstantrows('reverse',Y,PS)
```


Description

removeconstantrows processes matrices by removing rows with constant values.

$[\mathrm{Y}, \mathrm{PS}]=$ removeconstantrows (X,max_range) takes X and an optional parameter,
X
:---
max_range

and returns

Y	M-by- Q matrix with $N-M$ rows deleted
PS	Process settings that allow consistent processing of values

[Y,PS] = removeconstantrows (X,FP) takes parameters as a struct: FP.max_range.
$\mathrm{Y}=$ removeconstantrows('apply', X,PS) returns Y , given X and settings PS.
$\mathrm{X}=$ removeconstantrows('reverse', $Y, P S$) returns X , given Y and settings PS.
Any NaN values in the input matrix are treated as missing data, and are not considered as unique values. So, for example, removeconstantrows removes the first row from the matrix [1 $11 \mathrm{NaN} ; 1112]$.

Examples

Format a matrix so that the rows with constant values are removed.

```
x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0];
[y1,PS] = removeconstantrows(x1);
y1 =
    1
PS =
    max_range: 0
        keep: [1 3]
        remove: [2 4]
        value: [2x1 double]
        xrows: 4
        yrows: 2
    constants: [2x1 double]
    no_change: 0
```

Next, apply the same processing settings to new values.

```
x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0];
y2 = removeconstantrows('apply',x2,PS)
\begin{tabular}{lll}
5 & 2 & 3 \\
6 & 7 & 3
\end{tabular}
```

Reverse the processing of y 1 to get the original x 1 matrix.

```
x1_again = removeconstantrows('reverse',y1,PS)
\begin{tabular}{lll}
1 & 2 & 4 \\
1 & 1 & 1 \\
3 & 2 & 2 \\
0 & 0 & 0
\end{tabular}
```

```
See Also
fixunknowns | mapminmax | mapstd| processpca
Introduced in R2006a
```


removedelay

Remove delay to neural network's response

Syntax

```
net = removedelay(net,n)
```


Description

net $=$ removedelay (net, n) takes these arguments,

net	Neural network
n	Number of delays

and returns the network with input delay connections decreased, and output feedback delays increased, by the specified number of delays n. The result is a network which behaves identically, except that outputs are produced n timesteps earlier.

If the number of delays n is not specified, a default of one delay is used.

Examples

Remove and Add Delay to Network

This example creates, trains, and simulates a time delay network in its original form, on an input time series X and target series T. Then the delay is removed and later added back. The first and third outputs will be identical, while the second result will include a new prediction for the following step.

```
[X,T] = simpleseries_dataset;
net1 = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net1,X,T);
net1 = train(net1,Xs,Ts,Xi);
y1 = net1(Xs,Xi);
view(net1)
```


net2 = removedelay(net1);
[Xs,Xi,Ai,Ts] = preparets(net2,X,T);
y2 = net2 (Xs,Xi);
view(net2)

net3 = adddelay(net2);
[Xs,Xi,Ai,Ts] = preparets(net3,X,T);
y3 = net3(Xs,Xi);
view (net3)

See Also

adddelay | closeloop | openloop

Introduced in R2010b

removerows

Process matrices by removing rows with specified indices

Syntax

```
[Y,PS] = removerows(X,'ind',ind)
[Y,PS] = removerows(X,FP)
Y = removerows('apply',X,PS)
X = removerows('reverse',Y,PS)
dx_dy = removerows('dx',X,Y,PS)
dx_dy = removerows('dx',X,[],PS)
name = removerows('name')
fp = removerows('pdefaults')
names = removerows('pdesc')
removerows('pcheck',FP)
```


Description

removerows processes matrices by removing rows with the specified indices.
[Y,PS] = removerows (X,'ind',ind) takes X and an optional parameter,

X	N-by- Q matrix
ind	Vector of row indices to remove (default is [])

and returns

Y	M-by-Q matrix, where $M==N$-length (ind)
PS	Process settings that allow consistent processing of values

[Y, PS] = removerows (X,FP) takes parameters as a struct: FP.ind.
Y = removerows('apply',X,PS) returns Y, given X and settings PS.
$\mathrm{X}=$ removerows('reverse', Y, PS) returns X , given Y and settings PS.
$d x _d y=$ removerows ('dx', X,Y,PS) returns the M-by-N-by-Q derivative of Y with respect to X .
dx_dy = removerows ('dx', X, [], PS) returns the derivative, less efficiently.
name $=$ removerows ('name') returns the name of this process method.
$\mathrm{fp}=$ removerows('pdefaults') returns the default process parameter structure.
names $=$ removerows('pdesc') returns the process parameter descriptions.
removerows ('pcheck', FP) throws an error if any parameter is illegal.

Examples

Here is how to format a matrix so that rows 2 and 4 are removed:

```
x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,ps] = removerows(x1,'ind',[2 4])
```

Next, apply the same processing settings to new values.

```
x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = removerows('apply',x2,ps)
```

Reverse the processing of y 1 to get x 1 again.
x1_again = removerows('reverse',y1,ps)

Algorithms

In the reverse calculation, the unknown values of replaced rows are represented with NaN values.

See Also
fixunknowns | mapminmax | mapstd | processpca

Introduced in R2006a

revert

Change network weights and biases to previous initialization values

Syntax

```
net = revert (net)
```


Description

net $=$ revert (net) returns neural network net with weight and bias values restored to the values generated the last time the network was initialized.

If the network is altered so that it has different weight and bias connections or different input or layer sizes, then revert cannot set the weights and biases to their previous values and they are set to zeros instead.

Examples

Here a perceptron is created with input size set to 2 and number of neurons to 1 .

```
net = perceptron;
net.inputs{1}.size = 2;
net.layers{1}.size = 1;
```

The initial network has weights and biases with zero values.

```
net.iw{1,1}, net.b{1}
```

Change these values as follows:

```
net.iw{1,1} = [1 2];
net.b{1} = 5;
net.iw{1,1}, net.b{1}
```

You can recover the network's initial values as follows:

```
net = revert(net);
net.iw{1,1}, net.b{1}
```


See Also

adapt | init | sim|train

Introduced before R2006a

roc

Receiver operating characteristic

Syntax

[tpr,fpr,thresholds] = roc(targets,outputs)

Description

The receiver operating characteristic is a metric used to check the quality of classifiers. For each class of a classifier, roc applies threshold values across the interval [0,1] to outputs. For each threshold, two values are calculated, the True Positive Ratio (TPR) and the False Positive Ratio (FPR). For a particular class i, TPR is the number of outputs whose actual and predicted class is class i, divided by the number of outputs whose predicted class is class i. FPR is the number of outputs whose actual class is not class i, but predicted class is class i, divided by the number of outputs whose predicted class is not class i.

You can visualize the results of this function with plotroc.
[tpr,fpr,thresholds] = roc(targets,outputs) takes these arguments:

targets	S-by-Q matrix, where each column vector contains a single 1 value, with all other elements 0. The index of the 1 indicates which of S categories that vector represents.
outputs	S-by-Q matrix, where each column contains values in the range $[0,1]$. The index of the largest element in the column indicates which of S categories that vector presents. Alternately, 1-by-Q vector, where values greater or equal to 0.5 indicate class membership, and values below 0.5, nonmembership.

and returns these values:

tpr	1-by-S cell array of 1-by-N true-positive/positive ratios.

fpr	1-by-S cell array of 1-by-N false-positive/negative ratios.
thresholds	1-by-S cell array of 1-by-N thresholds over interval [0,1].

roc (targets, outputs) takes these arguments:

targets	1 -by-Q matrix of Boolean values indicating class membership.
outputs	S-by-Q matrix, of values in $[0,1]$ interval, where values greater than or equal to 0.5 indicate class membership.

and returns these values:

tpr	1-by-N vector of true-positive/positive ratios.
fpr	1-by-N vector of false-positive/negative ratios.
thresholds	1-by-N vector of thresholds over interval [0,1].

Examples

```
load iris_dataset
net = patternnet(20);
net = train(net,irisInputs,irisTargets);
irisOutputs = sim(net,irisInputs);
[tpr,fpr,thresholds] = roc(irisTargets,irisOutputs)
```


See Also

confusion | plotroc

Introduced in R2008a

sae

Sum absolute error performance function

Syntax

```
perf = sae(net,t,y,ew)
[...] = sae(...,'regularization',regularization)
[...] = sae(...,'normalization',normalization)
[...] = sae(...,'squaredWeighting',squaredWeighting)
[...] = sae(...,FP)
```


Description

sae is a network performance function. It measures performance according to the sum of squared errors.
perf $=$ sae (net, $t, y, e w)$ takes these input arguments and optional function parameters,

net	Neural network
t	Matrix or cell array of target vectors
y	Matrix or cell array of output vectors
ew	Error weights (default $=\{1\}$)

and returns the sum squared error.
This function has three optional function parameters that can be defined with parameter name/pair arguments, or as a structure FP argument with fields having the parameter name and assigned the parameter values:
[...] = sae(...,'regularization',regularization)
[...] = sae(...,'normalization',normalization)
[...] = sae(...,'squaredWeighting',squaredWeighting)

```
[...] = sae(...,FP)
```

- regularization - can be set to any value between the default of 0 and 1 . The greater the regularization value, the more squared weights and biases are taken into account in the performance calculation.
- normalization - can be set to the default 'absolute', or 'normalized' (which normalizes errors to the [+2 -2] range consistent with normalized output and target ranges of [-1 1 1) or 'percent' (which normalizes errors to the range [$-1+1]$).
- squaredWeighting - can be set to the default false, for applying error weights to absolute errors, or false for applying error weights to the squared errors before squaring.

Examples

Here a network is trained to fit a simple data set and its performance calculated

```
[x,t] = simplefit_dataset;
net = fitnet(10,'trainscg');
net.performFcn = 'sae';
net = train(net,x,t)
y = net(x)
e = t-y
perf = sae(net,t,y)
```


Network Use

To prepare a custom network to be trained with sae, set net. performFen to 'sae'. This automatically sets net. performParam to the default function parameters.

Then calling train, adapt or perform will result in sae being used to calculate performance.

Introduced in R2010b

satlin

Saturating linear transfer function

Graph and Symbol

$a=\operatorname{satlin}(n)$
Satlin Transfer Function

Syntax

```
A = satlin(N,FP)
```


Description

satlin is a neural transfer function. Transfer functions calculate a layer's output from its net input.
A = satlin(N,FP) takes one input,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N's elements clipped to [0, 1].
info = satlin('code') returns useful information for each supported code string: satlin('name') returns the name of this function.
satlin('output',FP) returns the [min max] output range.
satlin('active', FP) returns the [min max] active input range.
satlin('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S -by-Q.
satlin('fpnames') returns the names of the function parameters.
satlin('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the satlin transfer function.

```
n = -5:0.1:5;
a = satlin(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'satlin';
```


Algorithms

```
a = satlin(n) = 0, if n <= 0
n, if 0 <= n <= 1
1, if 1 <= n
```


See Also

poslin | purelin | satlins| sim

Introduced before R2006a

satlins

Symmetric saturating linear transfer function

Graph and Symbol

$a=\operatorname{satlins}(n)$

Satlins Transfer Function

Syntax

```
A = satlins(N,FP)
```


Description

satlins is a neural transfer function. Transfer functions calculate a layer's output from its net input.
A $=$ satlins $(N, F P)$ takes N and an optional argument,

N	S-by- Q matrix of net input (column) vectors
FP	Struct of function parameters (optional, ignored)

and returns A, the S-by-Q matrix of N's elements clipped to $[-1,1]$.
info = satlins('code') returns useful information for each supported code string: satlins('name') returns the name of this function.
satlins('output',FP) returns the [min max] output range.
satlins('active',FP) returns the [min max] active input range.
satlins('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
satlins('fpnames') returns the names of the function parameters.
satlins('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the satlins transfer function.

```
n = -5:0.1:5;
a = satlins(n);
plot(n,a)
```


Algorithms

```
satlins(n) = -1, if n <= -1
n, if -1 <= n <= 1
1, if 1 <= n
```


See Also

poslin | purelin | satlin | sim

Introduced before R2006a

scalprod

Scalar product weight function

Syntax

```
Z = scalprod(W, P)
dim = scalprod('size',S,R,FP)
dw = scalprod('dw',W,P,Z,FP)
```


Description

scalprod is the scalar product weight function. Weight functions apply weights to an input to get weighted inputs.
$Z=\operatorname{scalprod}(W, P)$ takes these inputs,

W	1-by-1 weight matrix
P	R-by-Q matrix of Q input (column) vectors

and returns the R-by- Q scalar product of W and P defined by $Z=W^{\star} P$.
dim = scalprod('size', $S, R, F P$) takes the layer dimension S, input dimension R, and function parameters, and returns the weight size [1-by-1].
$d w=s c a l p r o d(' d w ', W, P, Z, F P)$ returns the derivative of Z with respect to W.

Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input z .

```
W = rand (1,1);
P = rand (3,1);
Z = scalprod(W,P)
```


Network Use

To change a network so an input weight uses scalprod, set net.inputWeights\{i,j\}.weightFen to 'scalprod'.

For a layer weight, set net.layerWeights \{i,j\}.weightFcn to 'scalprod'.
In either case, call sim to simulate the network with scalprod.
See help newp and help newlin for simulation examples.

See Also

dist | dotprod| negdist | normprod | sim
Introduced in R2006a

selforgmap

Self-organizing map

Syntax

selforgmap (dimensions, coverSteps,initNeighbor,topologyFcn, distanceFc n)

Description

Self-organizing maps learn to cluster data based on similarity, topology, with a preference (but no guarantee) of assigning the same number of instances to each class.

Self-organizing maps are used both to cluster data and to reduce the dimensionality of data. They are inspired by the sensory and motor mappings in the mammal brain, which also appear to automatically organizing information topologically.
selforgmap (dimensions, coverSteps, initNeighbor,topologyFcn, distanceFc
n) takes these arguments,

dimensions	Row vector of dimension sizes (default = $\left[\begin{array}{ll}8 & 8\end{array}\right]$
coverSteps	Number of training steps for initial covering of the input space (default = 100)
initNeighbor	Initial neighborhood size (default = 3)
topologyFcn	Layer topology function (default = 'hextop')
distanceFcn	Neuron distance function (default = 'linkdist')

and returns a self-organizing map.

Examples

Use Self-Organizing Map to Cluster Data

Here a self-organizing map is used to cluster a simple set of data.

```
x = simplecluster_dataset;
net = selforgmap([8 8]);
net = train(net,x);
view (net)
y = net(x);
classes = vec2ind(y);
```


See Also

competlayer | lvqnet | nctool

Introduced in R2010b

separatewb

Separate biases and weight values from weight/bias vector

Syntax

```
[b,IW,LW] = separatewb(net,wb)
```


Description

$[b, I W, L W]=$ separatewb (net,wb) takes two arguments,

net	Neural network
wb	Weight/bias vector

and returns

b	Cell array of bias vectors
IW	Cell array of input weight matrices
LW	Cell array of layer weight matrices

Examples

Here a feedforward network is trained to fit some data, then its bias and weight values formed into a vector. The single vector is then redivided into the original biases and weights.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
wb = formwb(net, net.b,net.iw, net.lw)
[b,iw,lw] = separatewb(net,wb)
```


See Also

formwb | getwb | setwb

Introduced in R2010b

seq2con

Convert sequential vectors to concurrent vectors

Syntax

b = seq2con(s)

Description

Neural Network Toolbox software represents batches of vectors with a matrix, and sequences of vectors with multiple columns of a cell array.
seq 2 con and con 2 seq allow concurrent vectors to be converted to sequential vectors, and back again.
$\mathrm{b}=\mathrm{seq} 2 \mathrm{con}(\mathrm{s})$ takes one input,
\square
and returns

b	N-by-1 cell array of matrices with $M * T S$ columns

Examples

Here three sequential values are converted to concurrent values.

```
p1 = {\begin{array}{lll}{1}&{4}&{2}\end{array}}
p2 = seq2con(p1)
```

Here two sequences of vectors over three time steps are converted to concurrent vectors.

```
p1 = {[1; 1] [5; 4] [1; 2]; [3; 9] [4; 1] [9; 8]}
p2 = seq2con(p1)
```


See Also

con2seq | concur

Introduced before R2006a

setelements

Set neural network data elements

Syntax

```
setelements(x,i,v)
```


Description

setelements (x,i,v) takes these arguments,

x	Neural network matrix or cell array data
i	Indices
v	Neural network data to store into x

and returns the original data x with the data v stored in the elements indicated by the indices i.

Examples

This code sets elements 1 and 3 of matrix data:

```
x = [1 2; 3 4; 7 4]
v = [10 11; 12 13];
y = setelements(x,[1 3],v)
```

This code sets elements 1 and 3 of cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20 21 22; 23 24 25] [26 27 28; 29 30 31]}
y = setelements(x,[1 3],v)
```

```
See Also
catelements | getelements | nndata | numelements | setsamples | setsignals
| settimesteps
Introduced in R2010b
```


setsamples

Set neural network data samples

Syntax

```
setsamples(x,i,v)
```


Description

setsamples (x,i,v) takes these arguments,

x	Neural network matrix or cell array data
i	Indices
v	Neural network data to store into x

and returns the original data x with the data v stored in the samples indicated by the indices i.

Examples

This code sets samples 1 and 3 of matrix data:

```
x = [11 2 3; 4 7 4]
v = [10 11; 12 13];
y = setsamples(x,[1 3],v)
```

This code sets samples 1 and 3 of cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20 21; 22 23] [24 25; 26 27]; [28 29] [30 31]}
y = setsamples(x,[1 3],v)
```


See Also
 catsamples | getsamples | nndata | numsamples | setelements | setsignals | settimesteps

Introduced in R2010b

setsignals

Set neural network data signals

Syntax

setsignals(x,i,v)

Description

setsignals(x,i,v) takes these arguments,

x	Neural network matrix or cell array data
i	Indices
v	Neural network data to store into x

and returns the original data x with the data v stored in the signals indicated by the indices i.

Examples

This code sets signal 2 of cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20:22] [23:25]}
y = setsignals(x,2,v)
```


See Also

catsignals | getsignals | nndata| numsignals | setelements | setsamples | settimesteps

Introduced in R2010b

setsiminit

Set neural network Simulink block initial conditions

Syntax

```
setsiminit(sysName, netName,net,xi,ai,Q)
```


Description

setsiminit(sysName, netName, net, xi, ai, Q) takes these arguments,

sysName	The name of the Simulink system containing the neural network block
netName	The name of the Simulink neural network block
net	The original neural network
xi	Initial input delay states
ai	Initial layer delay states
Q	Sample number (default is 1)

and sets the Simulink neural network blocks initial conditions as specified.

Examples

Here a NARX network is designed. The NARX network has a standard input and an open loop feedback output to an associated feedback input.

```
[x,t] = simplenarx_dataset;
    net = narxnet(1:2,1:2,20);
    view(net)
    [xs,xi,ai,ts] = preparets(net,x,{},t);
    net = train(net,xs,ts,xi,ai);
    y = net(xs,xi,ai);
```

Now the network is converted to closed loop, and the data is reformatted to simulate the network's closed loop response.

```
net = closeloop(net);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);
```

Here the network is converted to a Simulink system with workspace input and output ports. Its delay states are initialized, inputs X1 defined in the workspace, and it is ready to be simulated in Simulink.

```
[sysName,netName] = gensim(net,'InputMode','Workspace',...
    'OutputMode','WorkSpace','SolverMode','Discrete');
setsiminit(sysName,netName,net,xi,ai,1);
x1 = nndata2sim(x,1,1);
```

Finally the initial input and layer delays are obtained from the Simulink model. (They will be identical to the values set with setsiminit.)

```
[xi,ai] = getsiminit(sysName,netName,net);
```


See Also

gensim | getsiminit|nndata2sim| sim2nndata

Introduced in R2010b

settimesteps

Set neural network data timesteps

Syntax

```
settimesteps(x,i,v)
```


Description

settimesteps (x, i, v) takes these arguments,

x	Neural network matrix or cell array data
i	Indices
v	Neural network data to store into x

and returns the original data x with the data v stored in the timesteps indicated by the indices i.

Examples

This code sets timestep 2 of cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20:22; 23:25]; [25:27]}
y = settimesteps(x,2,v)
```


See Also

cattimesteps | gettimesteps | nndata| numtimesteps | setelements | setsamples | setsignals

Introduced in R2010b

setwb

Set all network weight and bias values with single vector

Syntax

```
net = setwb (net,wb)
```


Description

This function sets a network's weight and biases to a vector of values.
net $=$ setwb (net, wb) takes the following inputs:

net	Neural network
wb	Vector of weight and bias values

Examples

Set Network's Weights and Biases

This example shows how to set and view a network's weight and bias values.
Create and configure a network.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(3);
net = configure(net,x,t);
view(net)
```


This network has three weights and three biases in the first layer, and three weights and one bias in the second layer. So, the total number of weight and bias values in the network is 10 . Set the weights and biases to random values.

```
net = setwb(net,rand(10,1));
```

View the weight and bias values

```
net.IW{1,1}
net.b{1}
```


See Also

formwb | getwb | separatewb

Introduced in R2010b

sim

Simulate neural network

Syntax

```
[Y,Xf,Af] = sim(net,X,Xi,Ai,T)
[Y,Xf,Af] = sim(net,{Q TS},Xi,Ai)
[Y,...] = sim(net,...,'useParallel',...)
[Y,...] = sim(net,...,'useGPU',...)
[Y,...] = sim(net,...,'showResources',...)
[Ycomposite,...] = sim(net,Xcomposite,...)
[Ygpu,...] = sim(net,Xgpu,...)
```


To Get Help

Type help network/sim.

Description

sim simulates neural networks.

$[\mathrm{Y}, \mathrm{Xf}, \mathrm{Af}]=\operatorname{sim}($ net, X,Xi,Ai,T) takes	
net	Network
X	Network inputs
Xi	Initial input delay conditions (default = zeros)
Ai	Initial layer delay conditions (default = zeros)
T	Network targets (default = zeros)

and returns

Y	Network outputs
Xf	Final input delay conditions

Af	Final layer delay conditions

sim is usually called implicitly by calling the neural network as a function. For instance, these two expressions return the same result:
$y=\operatorname{sim}(n e t, x, x i, a i)$
$y=\operatorname{net}(x, x i, a i)$
Note that arguments Xi, Ai, Xf, and Af are optional and need only be used for networks that have input or layer delays.

The signal arguments can have two formats: cell array or matrix.
The cell array format is easiest to describe. It is most convenient for networks with multiple inputs and outputs, and allows sequences of inputs to be presented:

X	Ni-by-TS cell array	Each element X\{i,ts $\}$ is an Ri-by-Q matrix.
Xi	Ni-by-ID cell array	Each element Xi\{i,k\} is an Ri-by-Q matrix.
Ai	Nl-by-LD cell array	Each element Ai $\{i, k\}$ is an Si-by-Q matrix.
T	No-by-TS cell array	Each element $X\{i$, ts $\}$ is a Ui-by-Q matrix.
Y	No-by-TS cell array	Each element $Y\{i$, ts $\}$ is a Ui-by-Q matrix.
Xf	Ni-by-ID cell array	Each element Xf $\{i, k\}$ is an Ri-by-Q matrix.
Af	Nl-by-LD cell array	Each element Af $\{i, k\}$ is an Si-by-Q matrix.

where

Ni	$=$	net. numInputs
Nl	$=$	net. numLayers
No	$=$	net. numOutputs
ID	$=$	net. numInputDelays
LD	$=$	net. numLayerDelays

TS	$=$	Number of time steps
Q	$=$	Batch size
Ri	$=$	net.inputs $\{i\}$. size
Si	$=$	net.layers $\{i\}$. size
Ui	$=$	net.outputs $\{i\} . s i z e$

The columns of Xi, Ai, Xf, and Af are ordered from oldest delay condition to most recent:

$\mathrm{Xi}\{\mathrm{i}, \mathrm{k}\}$	$=$	Input i at time $\mathrm{ts}=\mathrm{k}-\mathrm{ID}$
$\mathrm{Xf}\{\mathrm{i}, \mathrm{k}\}$	$=$	Input i at time $\mathrm{t} s=\mathrm{TS}+\mathrm{k}-\mathrm{ID}$
$\operatorname{Ai}\{\mathrm{i}, \mathrm{k}\}$	$=$	Layer output i at time $\mathrm{t} s=\mathrm{k}-\mathrm{LD}$
$\operatorname{Af}\{\mathrm{i}, \mathrm{k}\}$	$=$	Layer output i at time $\mathrm{t} s=\mathrm{TS}+\mathrm{k}-\mathrm{LD}$

The matrix format can be used if only one time step is to be simulated ($T S=1$). It is convenient for networks with only one input and output, but can also be used with networks that have more.

Each matrix argument is found by storing the elements of the corresponding cell array argument in a single matrix:

X	(sum of Ri) -by-Q matrix
Xi	(sum of Ri)-by-(ID*Q) matrix
Ai	(sum of Si) -by-(LD*Q) matrix
T	(sum of Ui) -by-Q matrix
Y	(sum of Ui) -by-Q matrix
Xf	(sum of Si) -by-(LD*Q) matrix
Af	

$[Y, X f, A f]=\operatorname{sim}(n e t,\{Q T S\}, X i, A i)$ is used for networks that do not have an input, such as Hopfield networks, when cell array notation is used.

```
[Y,...] = sim(net,...,'useParallel',...), [Y,...] =
```

sim(net,...,'useGPU',...), or [Y,...] =
sim(net, ...,'showResources', . .) (or the network called as a function) accepts optional name/value pair arguments to control how calculations are performed. Two of these options allow training to happen faster or on larger datasets using parallel workers
or GPU devices if Parallel Computing Toolbox is available. These are the optional name/ value pairs:

'useParallel', 'no'	Calculations occur on normal MATLAB thread. This is the default 'useParallel' setting.
'useParallel', 'yes'	Calculations occur on parallel workers if a parallel pool is open. Otherwise calculations occur on the normal MATLAB thread.
'useGPU', 'no'	Calculations occur on the CPU. This is the default 'useGPU' setting.
'useGPU', 'yes'	Calculations occur on the current gpuDevice if it is a supported GPU (See Parallel Computing Toolbox for GPU requirements.) If the current gpuDevice is not supported, calculations remain on the CPU. If 'useParallel ' is also 'yes' and a parallel pool is open, then each worker with a unique GPU uses that GPU, other workers run calculations on their respective CPU cores.
'useGPU', 'only'	If no parallel pool is open, then this setting is the same as 'yes '. If a parallel pool is open, then only workers with unique GPUs are used. However, if a parallel pool is open, but no supported GPUs are available, then calculations revert to performing on all worker CPUs.
'showResources' ' 'no'	Do not display computing resources used at the command line. This is the default setting.
'showResources' ' 'yes'	Show at the command line a summary of the computing resources actually used. The actual resources may differ from the requested resources, if parallel or GPU computing is requested but a parallel pool is not open or a supported GPU is not available. When parallel workers are used, each worker's computation mode is described, including workers in the pool that are not used.

[Ycomposite,...] = sim(net,Xcomposite,...) takes Composite data and returns Composite results. If Composite data is used, then 'useParallel' is automatically set to 'yes'.
[Ygpu,...] $=\operatorname{sim}($ net, Xgpu, ...) takes gpuArray data and returns gpuArray results. If gpuArray data is used, then 'useGPU' is automatically set to 'yes'.

Examples

In the following examples, the sim function is called implicitly by calling the neural network object (net) as a function.

Simulate Feedforward Networks

This example loads a dataset that maps anatomical measurements x to body fat percentages t. A feedforward network with 10 neurons is created and trained on that data, then simulated.

```
[x,t] = bodyfat_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
```


Simulate NARX Time Series Networks

This example trains an open-loop nonlinear-autoregressive network with external input, to model a levitated magnet system defined by a control current x and the magnet's vertical position response t, then simulates the network. The function preparets prepares the data before training and simulation. It creates the open-loop network's combined inputs xo, which contains both the external input x and previous values of position t. It also prepares the delay states xi.

```
[x,t] = maglev_dataset;
net = narxnet(10);
[xo,xi,~,to] = preparets(net,x,{},t);
net = train(net,xo,to,xi);
y = net(xo,xi)
```

This same system can also be simulated in closed-loop form.

```
netc = closeloop(net);
view(netc)
[xc,xi,ai,tc] = preparets(netc,x,{},t);
yc = netc(xc,xi,ai);
```


Simulate in Parallel on a Parallel Pool

Parallel Computing Toolbox allows Neural Network Toolbox to simulate and train networks faster and on larger datasets than can fit on one PC. Here training and simulation happens across parallel MATLAB workers.

```
parpool
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useParallel','yes','showResources','yes');
Y = net(X,'useParallel','yes');
```


Simulate on GPUs

Use Composite values to distribute the data manually, and get back the results as a Composite value. If the data is loaded as it is distributed, then while each piece of the dataset must fit in RAM, the entire dataset is limited only by the total RAM of all the workers.

```
Xc = Composite;
for i=1: numel(Xc)
    Xc{i} = X+rand(size(X))*0.1; % Use real data instead of random
end
Yc = net(Xc,'showResources','yes');
```

Networks can be simulated using the current GPU device, if it is supported by Parallel Computing Toolbox.

```
gpuDevice % Check if there is a supported GPU
Y = net(X,'useGPU','yes','showResources','yes');
```

To put the data on a GPU manually, and get the results on the GPU:

```
Xgpu = gpuArray(X);
Ygpu = net(Xgpu,'showResources','yes');
Y = gather(Ygpu);
```

To run in parallel, with workers associated with unique GPUs taking advantage of that hardware, while the rest of the workers use CPUs:

```
Y = net(X,'useParallel','yes','useGPU','yes','showResources','yes');
```

Using only workers with unique GPUs might result in higher speeds, as CPU workers might not keep up.

```
Y = net(X,'useParallel','yes','useGPU','only','showResources','yes');
```


Algorithms

sim uses these properties to simulate a network net.

```
net.numInputs, net.numLayers
```

net.outputconnect, net.biasConnect
net.inputConnect, net.layerConnect

These properties determine the network's weight and bias values and the number of delays associated with each weight:

```
net.IW{i,j}
net.LWW{i,j}
net.b{i}
net.inputWeights{i,j}.delays
net.layerWeights{i,j}.delays
```

These function properties indicate how sim applies weight and bias values to inputs to get each layer's output:

```
net.inputWeights{i,j}.weightFcn
net.layerWeights{i,j}.weightFcn
net.layers{i}.netInputFcn
net.layers{i}.transferFcn
```


See Also

adapt | init | revert | train

Introduced before R2006a

sim2nndata

Convert Simulink time series to neural network data

Syntax

sim2nndata(x)

Description

sim2nndata (x) takes either a column vector of values or a Simulink time series structure and converts it to a neural network data time series.

Examples

Here a random Simulink 20 -step time series is created and converted.

```
simts = rands(20,1);
nnts = sim2nndata(simts)
```

Here a similar time series is defined with a Simulink structure and converted.

```
simts.time = 0:19
simts.signals.values = rands(20,1);
simts.dimensions = 1;
nnts = sim2nndata(simts)
```


See Also

nndata | nndata2sim

Introduced in R2010b

softmax

Soft max transfer function

Softmax Transfer Function

Syntax

$\mathrm{A}=\operatorname{softmax}(\mathrm{N}, \mathrm{FP})$

Description

softmax is a neural transfer function. Transfer functions calculate a layer's output from its net input.
A $=\operatorname{softmax}(N, F P)$ takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of the softmax competitive function applied to each column of N .
info = softmax('code') returns information about this function. The following codes are defined:
softmax ('name') returns the name of this function.
softmax('output',FP) returns the [min max] output range.

```
softmax('active',FP) returns the [min max] active input range.
```

softmax ('fullderiv') returns 1 or 0 , depending on whether $d A _d N$ is S-by- S-by- Q or s-by-e.
softmax ('fpnames') returns the names of the function parameters.
softmax ('fpdefaults') returns the default function parameters.

Examples

Here you define a net input vector N, calculate the output, and plot both with bar graphs.

```
n = [0; 1; -0.5; 0.5];
a = softmax(n);
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'softmax';
```


Algorithms

```
a = softmax(n) = exp(n)/sum(exp(n))
```


See Also

compet| sim

Introduced before R2006a

srchbac

1-D minimization using backtracking

Syntax

[a,gX,perf,retcode,delta,tol] =
srchbac (net, X, Pd, Tl, Ai, Q, TS, dX, gX, perf,dperf,delta,TOL, ch_perf)

Description

srchbac is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique called backtracking.
[a,gX,perf,retcode,delta,tol] =
srchbac (net, X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf) takes these inputs,

net	Neural network
X	Vector containing current values of weights and biases
Pd	Delayed input vectors
Tl	Layer target vectors
Ai	Initial input delay conditions
Q	Batch size
TS	Time steps
dX	Search direction vector
gX	Gradient vector
perf	Performance value at current X
dperf	Slope of performance value at current X in direction of dX
delta	Initial step size
tol	Tolerance on search

ch_perf	Change in performance on previous step

and returns

a	Step size that minimizes performance
perf	Gradient at new minimum point
retcode	Performance value at new minimum point
	Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function.
	0 Normal
	1 Minimum step taken
delta	2 Maximum step taken
tol	3 Beta condition not met
	New initial step size, based on the current step size
	New tolerance on search

Parameters used for the backstepping algorithm are

alpha	Scale factor that determines sufficient reduction in perf
beta	Scale factor that determines sufficiently large step size
low_lim	Lower limit on change in step size
up_lim	Upper limit on change in step size
maxstep	Maximum step length
minstep	Minimum step length
scale_tol	Parameter that relates the tolerance tol to the initial step size delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd	No-by-Ni-by-TS cell array	Each element P $\{i, j$, ts $\}$ is a Dij-by-Q matrix.
Tl	Nl-by-TS cell array	Each element $P\{i$, ts $\}$ is a Vi-by-Q matrix.
V	Nl-by-LD cell array	Each element Ai $\{i, k\}$ is an Si-by-Q matrix..

where

Ni	$=$	net. numInputs
Nl	$=$	net. numLayers
LD	$=$	net. numLayerDelays
Ri	$=$	net.inputs\{i\}.size
Si	$=$	net.layers\{i\}.size
Vi	$=$	net.targets\{i\}.size
Dij	$=$	Ri * length(net.inputWeights\{i,j\}.delays)

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

```
p = [llllllll}
t = [l0 0 0 1 1 1 1];
```

A two-layer feed-forward network is created. The network's input ranges from [0 to 10]. The first layer has two tansig neurons, and the second layer has one logsig neuron. The traincgf network training function and the srchbac search function are to be used.

Create and Test a Network

```
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)
```


Train and Retest the Network

```
net.trainParam.searchFcn = 'srchbac';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)
```


Network Use

You can create a standard network that uses srchbac with newff, newcf, or newelm.
To prepare a custom network to be trained with traincgf, using the line search function srchbac,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf's default parameters.
2 Set net.trainParam. searchFen to 'srchbac'.
The srchbac function can be used with any of the following training functions:
traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

Backtracking Search

The backtracking search routine srchbac is best suited to use with the quasi-Newton optimization algorithms. It begins with a step multiplier of 1 and then backtracks until an acceptable reduction in the performance is obtained. On the first step it uses the value of performance at the current point and a step multiplier of 1 . It also uses the value of the derivative of performance at the current point to obtain a quadratic approximation to the performance function along the search direction. The minimum of the quadratic approximation becomes a tentative optimum point (under certain conditions) and the performance at this point is tested. If the performance is not sufficiently reduced, a cubic interpolation is obtained and the minimum of the cubic interpolation becomes the new tentative optimum point. This process is continued until a sufficient reduction in the performance is obtained.

The backtracking algorithm is described in Dennis and Schnabel. It is used as the default line search for the quasi-Newton algorithms, although it might not be the best technique for all problems.

Algorithms

srchbac locates the minimum of the performance function in the search direction $d x$, using the backtracking algorithm described on page 126 and 328 of Dennis and Schnabel's book, noted below.

References

Dennis, J.E., and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs, NJ, Prentice-Hall, 1983

See Also

srchcha | srchgol | srchhyb

Introduced before R2006a

srchbre

1-D interval location using Brent's method

Syntax

[a,gX,perf,retcode,delta,tol] =

Description

srchbre is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique called Brent's technique.
[a,gX,perf,retcode,delta,tol] =
srchbre (net, X, Pd,Tl, Ai, Q,TS, dX,gX,perf,dperf,delta,tol,ch_perf) takes these inputs,

net	Neural network
X	Vector containing current values of weights and biases
Pd	Delayed input vectors
Tl	Layer target vectors
Ai	Initial input delay conditions
Q	Batch size
TS	Time steps
dX	Search direction vector
gX	Gradient vector
perf	Performance value at current X
dperf	Slope of performance value at current X in direction of dX
delta	Initial step size
tol	Tolerance on search

ch_perf and returns a Change in performance on previous step gX Step size that minimizes performance perf Gradient at new minimum point retcode Performance value at new minimum point Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function. 0 Normal 1 Minimum step taken delta 2 Maximum step taken tol 3 Beta condition not met

Parameters used for the Brent algorithm are

alpha	Scale factor that determines sufficient reduction in perf
beta	Scale factor that determines sufficiently large step size
bmax	Largest step size
scale_tol	Parameter that relates the tolerance tol to the initial step size delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd	No-by-Ni-by-TS cell array	Each element $P\{i, j$, ts $\}$ is a Dij-by-Q matrix.

Tl	Nl-by-TS cell array	Each element $\mathrm{P}\{\mathrm{i}, \mathrm{ts}\}$ is a Vi-by-Q matrix.
Ai	Nl-by-LD cell array	Each element Ai $\{\mathrm{i}, \mathrm{k}\}$ is an Si-by-Q matrix.

where

Ni	$=$	net.numInputs
Ni	$=$	net.numLayers
LD	$=$	net.numLayerDelays
Ri	$=$	net.inputs\{i\}.size
Si	$=$	net.layers\{i\}.size
Vi	$=$	net.targets\{i\}.size
Dij	$=$	Ri * length(net.inputWeights\{i,j\}.delays)

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

```
p = [llllllll}
t = [llllllll}
```

A two-layer feed-forward network is created. The network's input ranges from [0 to 10]. The first layer has two tansig neurons, and the second layer has one logsig neuron. The traincgf network training function and the srchbac search function are to be used.

Create and Test a Network

```
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)
```


Train and Retest the Network

```
net.trainParam.searchFcn = 'srchbre';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
```

```
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)
```


Network Use

You can create a standard network that uses srchbre with newff, newcf, or newelm. To prepare a custom network to be trained with traincgf, using the line search function srchbre,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf's default parameters.
2 Set net.trainParam. searchFcn to 'srchbre'.
The srchbre function can be used with any of the following training functions: traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

Brent's Search

Brent's search is a linear search that is a hybrid of the golden section search and a quadratic interpolation. Function comparison methods, like the golden section search, have a first-order rate of convergence, while polynomial interpolation methods have an asymptotic rate that is faster than superlinear. On the other hand, the rate of convergence for the golden section search starts when the algorithm is initialized, whereas the asymptotic behavior for the polynomial interpolation methods can take many iterations to become apparent. Brent's search attempts to combine the best features of both approaches.

For Brent's search, you begin with the same interval of uncertainty used with the golden section search, but some additional points are computed. A quadratic function is then fitted to these points and the minimum of the quadratic function is computed. If this minimum is within the appropriate interval of uncertainty, it is used in the next stage of the search and a new quadratic approximation is performed. If the minimum falls outside the known interval of uncertainty, then a step of the golden section search is performed.

See [Bren73] for a complete description of this algorithm. This algorithm has the advantage that it does not require computation of the derivative. The derivative computation requires a backpropagation through the network, which involves more computation than a forward pass. However, the algorithm can require more performance evaluations than algorithms that use derivative information.

Algorithms

srchbre brackets the minimum of the performance function in the search direction $d x$, using Brent's algorithm, described on page 46 of Scales (see reference below). It is a hybrid algorithm based on the golden section search and the quadratic approximation.

References

Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also
srchbac | srchcha| srchgol | srchhyb
Introduced before R2006a

srchcha

1-D minimization using Charalambous' method

Syntax

[a,gX,perf,retcode,delta,tol] =
srchcha(net, X, Pd,Tl,Ai, Q,TS, dX, gX, perf,dperf,delta,tol,ch_perf)

Description

srchcha is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique based on Charalambous' method.

net	Neural network
X	Vector containing current values of weights and biases
Pd	Delayed input vectors
Tl	Layer target vectors
Ai	Initial input delay conditions
Q	Batch size
TS	Time steps
dX	Search direction vector
gX	Gradient vector
perf	Performance value at current X
dperf	Slope of performance value at current X in direction of dx
delta	Initial step size
tol	Tolerance on search

ch_perf	Change in performance on previous step

and returns

a	Step size that minimizes performance
gX	Gradient at new minimum point
perf	Performance value at new minimum point
retcode	Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function.
	0 Normal
	1 Minimum step taken
	2 Maximum step taken
delta	3 Beta condition not met
tol	New initial step size, based on the current step size

Parameters used for the Charalambous algorithm are

alpha	Scale factor that determines sufficient reduction in perf
beta	Scale factor that determines sufficiently large step size
gama	Parameter to avoid small reductions in performance, usually set to 0.1
scale_tol	Parameter that relates the tolerance tol to the initial step size delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd	No-by-Ni-by-TS cell array	Each element P\{i,j,ts $\}$ is a Dij-by-Q matrix.

Tl	Nl-by-TS cell array	Each element $\mathrm{P}\{\mathrm{i}, \mathrm{ts}\}$ is a Vi-by-Q matrix.
Ai	Nl-by-LD cell array	Each element Ai $\{\mathrm{i}, \mathrm{k}\}$ is an Si-by-Q matrix.

where

Ni	$=$	net. numinputs
N1	$=$	net. numLayers
LD	$=$	net. numLayerDelays
Ri	$=$	net.inputs\{i\}.size
Si	$=$	net.layers i i . size
Vi	$=$	net.targets i i\}.size
Dij	$=$	Ri * length(net.inputWeights $\left.\mathrm{i}^{\text {, }} \mathbf{j}\right\}$. delays)

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

```
p = [lllllll}
t = [lllllll
```

A two-layer feed-forward network is created. The network's input ranges from [0 to 10]. The first layer has two tansig neurons, and the second layer has one logsig neuron. The traincgf network training function and the srchcha search function are to be used.

Create and Test a Network

```
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)
```


Train and Retest the Network

```
net.trainParam.searchFcn = 'srchcha';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
```

```
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)
```


Network Use

You can create a standard network that uses srchcha with newff, newcf, or newelm.
To prepare a custom network to be trained with traincgf, using the line search function srchcha,

> 1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf's default parameters.

2 Set net.trainParam. searchFen to 'srchcha'.
The srchcha function can be used with any of the following training functions:
traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

Charalambous' Search

The method of Charalambous, srchcha, was designed to be used in combination with a conjugate gradient algorithm for neural network training. Like srchbre and srchhyb, it is a hybrid search. It uses a cubic interpolation together with a type of sectioning.

See [Char92] for a description of Charalambous' search. This routine is used as the default search for most of the conjugate gradient algorithms because it appears to produce excellent results for many different problems. It does require the computation of the derivatives (backpropagation) in addition to the computation of performance, but it overcomes this limitation by locating the minimum with fewer steps. This is not true for all problems, and you might want to experiment with other line searches.

Algorithms

srchcha locates the minimum of the performance function in the search direction dx , using an algorithm based on the method described in Charalambous (see reference below).

References

Charalambous, C., "Conjugate gradient algorithm for efficient training of artificial neural networks," IEEE Proceedings, Vol. 139, No. 3, June, 1992, pp. 301-310.

See Also

srchbac | srchbre | srchgol | srchhyb

Introduced before R2006a

srchgol

1-D minimization using golden section search

Syntax

[a,gX,perf,retcode,delta,tol] =
srchgol(net, X, Pd,Tl,Ai, Q,TS, dX, gX,perf,dperf, delta,tol,ch_perf)

Description

srchgol is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique called the golden section search.
[a,gX,perf,retcode, delta,tol] =
srchgol (net, X, Pd, Tl, Ai, Q,TS, dX, gX, perf,dperf,delta,tol, ch_perf) takes these inputs,

net	Neural network
X	Vector containing current values of weights and biases
Pd	Delayed input vectors
Tl	Layer target vectors
Ai	Initial input delay conditions
Q	Batch size
TS	Time steps
dX	Search direction vector
gX	Gradient vector
perf	Performance value at current X
dperf	Slope of performance value at current X in direction of dX
delta	Initial step size
tol	Tolerance on search

ch_perf	Change in performance on previous step

and returns

a	Step size that minimizes performance
gX	Gradient at new minimum point
retcode	Performance value at new minimum point
	Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function.
	0 Normal
	1 Minimum step taken
delta	2 Maximum step taken
tol	3 Beta condition not met
	New initial step size, based on the current step size
	New tolerance on search

Parameters used for the golden section algorithm are

alpha	Scale factor that determines sufficient reduction in perf
bmax	Largest step size
scale_tol	Parameter that relates the tolerance tol to the initial step size delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd	No-by-Ni-by-TS cell array	Each element $P\{i, j$, ts $\}$ is a Dij-by-Q matrix.
T1	Nl-by-TS cell array	Each element $P\{i$, ts $\}$ is a Vi-by-Q matrix.

Ai	Nl-by-LD cell array	Each element Ai $\{i, k\}$ is an Si-by-Q matrix.

where

Ni	$=$	net. numInputs
Nl	$=$	net. numLayers
LD	$=$	net.numLayerDelays
Ri	$=$	net.inputs\{i\}.size
Si	$=$	net.tayers\{i\}.size
Vi	$=$	Ri * length(net.inputWeights\{i,j\}.delays)
Dij		

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

```
p = [llllllll}
t = [0 0 0 1 1 1];
```

A two-layer feed-forward network is created. The network's input ranges from [0 to 10]. The first layer has two tansig neurons, and the second layer has one logsig neuron. The traincgf network training function and the srchgol search function are to be used.

Create and Test a Network

```
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)
```


Train and Retest the Network

```
net.trainParam.searchFcn = 'srchgol';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)
```


Network Use

You can create a standard network that uses srchgol with newff, newcf, or newelm.
To prepare a custom network to be trained with traincgf, using the line search function srchgol,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf's default parameters.
2 Set net.trainParam. searchFen to 'srchgol'.
The srchgol function can be used with any of the following training functions: traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

Golden Section Search

The golden section search srchgol is a linear search that does not require the calculation of the slope. This routine begins by locating an interval in which the minimum of the performance function occurs. This is accomplished by evaluating the performance at a sequence of points, starting at a distance of delta and doubling in distance each step, along the search direction. When the performance increases between two successive iterations, a minimum has been bracketed. The next step is to reduce the size of the interval containing the minimum. Two new points are located within the initial interval. The values of the performance at these two points determine a section of the interval that can be discarded, and a new interior point is placed within the new interval. This procedure is continued until the interval of uncertainty is reduced to a width of tol, which is equal to delta/scale_tol.

See [HDB96], starting on page 12-16, for a complete description of the golden section search. Try the Neural Network Design demonstration nnd12sd1 [HDB96] for an illustration of the performance of the golden section search in combination with a conjugate gradient algorithm.

Algorithms

srchgol locates the minimum of the performance function in the search direction dX , using the golden section search. It is based on the algorithm as described on page 33 of Scales (see reference below).

References

Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also

srchbac | srchbre | srchcha | srchhyb

Introduced before R2006a

srchhyb

1-D minimization using a hybrid bisection-cubic search

Syntax

[a,gX,perf,retcode,delta,tol] =
srchhyb (net, X, Pd, Tl, Ai, e, TS, dX, gX,perf,dperf, delta, tol,ch_perf)

Description

srchhyb is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique that is a combination of a bisection and a cubic interpolation.

```
[a,gX,perf,retcode,delta,tol] =
srchhyb(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) takes
these inputs,
```

net	Neural network
X	Vector containing current values of weights and biases
Pd	Delayed input vectors
Tl	Layer target vectors
Ai	Initial input delay conditions
Q	Batch size
TS	Time steps
dX	Search direction vector
gX	Gradient vector
perf	Performance value at current X
dperf	Slope of performance value at current X in direction of dX
delta	Initial step size
tol	Tolerance on search

ch_perf	Change in performance on previous step

and returns

a	Step size that minimizes performance
gX	Gradient at new minimum point
perf	Performance value at new minimum point
retcode	Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function.
	0 Normal
	1 Minimum step taken
	2 Maximum step taken
delta	3 Beta condition not met
tol	New initial step size, based on the current step size
	New tolerance on search

Parameters used for the hybrid bisection-cubic algorithm are

alpha	Scale factor that determines sufficient reduction in perf
beta	Scale factor that determines sufficiently large step size
bmax	Largest step size
scale_tol	Parameter that relates the tolerance tol to the initial step size delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd	No-by-Ni-by-TS cell array	Each element $P\{i, j$, ts $\}$ is a Dij-by-Q matrix.

Tl	Nl-by-TS cell array	Each element $\mathrm{P}\{\mathrm{i}, \mathrm{ts}\}$ is a Vi-by-Q matrix.
Ai	Nl-by-LD cell array	Each element Ai $\{\mathrm{i}, \mathrm{k}\}$ is an Si-by-Q matrix.

where

Ni	$=$	net. numInputs
Nl	$=$	net.numLayers
LD	$=$	net.numLayerDelays
Ri	$=$	net. inputs $\{$ i\}.size
Si	$=$	net.targets\{i\}.size
Vi	$=$	Ri * length(net.inputWeights\{i,j\}.delays)
Dij		

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

```
p = [lllllll}
t = [lllllll
```

A two-layer feed-forward network is created. The network's input ranges from [0 to 10]. The first layer has two tansig neurons, and the second layer has one logsig neuron. The traincgf network training function and the srchhyb search function are to be used.

Create and Test a Network

```
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)
```


Train and Retest the Network

```
net.trainParam.searchFcn = 'srchhyb';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
```

```
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)
```


Network Use

You can create a standard network that uses srchhyb with newff, newcf, or newelm.
To prepare a custom network to be trained with traincgf, using the line search function srchhyb,

```
1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf's default parameters.
```

2 Set net.trainParam.searchFcn to 'srchhyb'.
The srchhyb function can be used with any of the following training functions:
traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

Hybrid Bisection Cubic Search

Like Brent's search, srchhyb is a hybrid algorithm. It is a combination of bisection and cubic interpolation. For the bisection algorithm, one point is located in the interval of uncertainty, and the performance and its derivative are computed. Based on this information, half of the interval of uncertainty is discarded. In the hybrid algorithm, a cubic interpolation of the function is obtained by using the value of the performance and its derivative at the two endpoints. If the minimum of the cubic interpolation falls within the known interval of uncertainty, then it is used to reduce the interval of uncertainty. Otherwise, a step of the bisection algorithm is used.

See [Scal85] for a complete description of the hybrid bisection-cubic search. This algorithm does require derivative information, so it performs more computations at each step of the algorithm than the golden section search or Brent's algorithm.

Algorithms

srchhyb locates the minimum of the performance function in the search direction dX , using the hybrid bisection-cubic interpolation algorithm described on page 50 of Scales (see reference below).

References

Scales, L.E., Introduction to Non-Linear Optimization, New York Springer-Verlag, 1985

See Also

srchbac | srchbre| srchcha | srchgol

Introduced before R2006a

sse

Sum squared error performance function

Syntax

```
perf = sse(net,t,y,ew)
[...] = sse(...,'regularization',regularization)
[...] = sse(...,'normalization',normalization)
[...] = sse(...,'squaredWeighting',squaredWeighting)
[...] = sse(...,FP)
```


Description

sse is a network performance function. It measures performance according to the sum of squared errors.
perf = sse (net, t,y,ew) takes these input arguments and optional function parameters,

net	Neural network
t	Matrix or cell array of target vectors
y	Matrix or cell array of output vectors
ew	Error weights (default $=\{1\}$)

and returns the sum squared error.
This function has three optional function parameters which can be defined with parameter name/pair arguments, or as a structure FP argument with fields having the parameter name and assigned the parameter values.
[...] = sse(...,'regularization',regularization)
[...] = sse(...,'normalization',normalization)
[...] = sse(...,'squaredWeighting',squaredWeighting)

```
[...] = sse(...,FP)
```

- regularization - can be set to any value between the default of 0 and 1 . The greater the regularization value, the more squared weights and biases are taken into account in the performance calculation.
- normalization - can be set to the default 'absolute', or 'normalized' (which normalizes errors to the [+2 -2] range consistent with normalized output and target ranges of [-1 1 1) or 'percent' (which normalizes errors to the range [$-1+1]$).
- squaredWeighting - can be set to the default true, for applying error weights to squared errors; or false for applying error weights to the absolute errors before squaring.

Examples

Here a network is trained to fit a simple data set and its performance calculated

```
[x,t] = simplefit_dataset;
net = fitnet(10);
net.performFcn = 'sse';
net = train(net,x,t)
y = net(x)
e = t-y
perf = sse(net,t,y)
```


Network Use

To prepare a custom network to be trained with sse, set net. performFen to 'sse'. This automatically sets net. performParam to the default function parameters.

Then calling train, adapt or perform will result in sse being used to calculate performance.

Introduced before R2006a

staticderiv

Static derivative function

Syntax

```
staticderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
staticderiv('de_dwb',net,X,T,Xi,Ai,EW)
```


Description

This function calculates derivatives using the chain rule from the networks performance or outputs back to its inputs. For time series data and dynamic networks this function ignores the delay connections resulting in a approximation (which may be good or not) of the actual derivative. This function is used by Elman networks (elmannet) which is a dynamic network trained by the static derivative approximation when full derivative calculations are not available. As full derivatives are calculated by all the other derivative functions, this function is not recommended for dynamic networks except for research into training algorithms.
staticderiv('dperf_dwb', net, X,T,Xi,Ai,EW) takes these arguments,

net	Neural network
X	Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T	Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi	Initial input delay states (optional)
Ai	Initial layer delay states (optional)
EW	Error weights (optional)

and returns the gradient of performance with respect to the network's weights and biases, where R and S are the number of input and output elements and Q is the number of samples (and N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).
staticderiv('de_dwb', net, X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the network's weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```
[x,t] = simplefit dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = staticderiv('dperf_dwb',net,x,t)
jwb = staticderiv('de_dwb',net,x,t)
```


See Also

bttderiv| defaultderiv | fpderiv | num2deriv

Introduced in R2010b

sumabs

Sum of absolute elements of matrix or matrices

Syntax

$[\mathrm{s}, \mathrm{n}]=\operatorname{sumabs}(\mathrm{x})$

Description

$[\mathrm{s}, \mathrm{n}]=$ sumabs (x) takes a matrix or cell array of matrices and returns,

s	Sum of all absolute finite values
n	Number of finite values

If x contains no finite values, the sum returned is 0 .

Examples

```
m = sumabs([1 2;3 4])
[m,n] = sumabs({[1 2; NaN 4], [4 5; 2 3]})
```


See Also

meanabs | meansqr | sumsqr

Introduced in R2010b

sumsqr

Sum of squared elements of matrix or matrices

Syntax

$[\mathrm{s}, \mathrm{n}]=\operatorname{sumsqr}(\mathrm{x})$

Description

$[\mathrm{s}, \mathrm{n}]=$ sumsqr (x$)$ takes a matrix or cell array of matrices and returns,

s	Sum of all squared finite values
n	Number of finite values

If x contains no finite values, the sum returned is 0 .

Examples

```
m = sumsqr([1 2;3 4])
[m,n] = sumsqr({[1 2; NaN 4], [4 5; 2 3]})
```


See Also

meanabs | meansqr | sumabs
Introduced before R2006a

tansig

Hyperbolic tangent sigmoid transfer function

Graph and Symbol

Tan-Sigmoid Transfer Function

Syntax

$\mathrm{A}=\operatorname{tansig}(\mathrm{N}, \mathrm{FP})$

Description

tansig is a neural transfer function. Transfer functions calculate a layer's output from its net input.
A $=\operatorname{tansig}(\mathrm{N}, \mathrm{FP})$ takes N and optional function parameters,

N	S-by- Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N's elements squashed into [-11 - 1 .

Examples

Here is the code to create a plot of the tansig transfer function.

```
n = -5:0.1:5;
a = tansig(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'tansig';
```


Algorithms

```
a = tansig(n) = 2/(1+exp(-2*n))-1
```

This is mathematically equivalent to $\tanh (\mathrm{N})$. It differs in that it runs faster than the MATLAB implementation of tanh, but the results can have very small numerical differences. This function is a good tradeoff for neural networks, where speed is important and the exact shape of the transfer function is not.

References

Vogl, T.P., J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon, "Accelerating the convergence of the backpropagation method," Biological Cybernetics, Vol. 59, 1988, pp. 257-263

See Also

logsig | sim
Introduced before R2006a

tapdelay

Shift neural network time series data for tap delay

Syntax

tapdelay(x,i,ts,delays)

Description

tapdelay (x,i,ts, delays) takes these arguments,

x	Neural network time series data
i	Signal index
ts	Timestep index
delays	Row vector of increasing zero or positive delays

and returns the tap delay values of signal i at timestep ts given the specified tap delays.

Examples

Here a random signal \times consisting of eight timesteps is defined, and a tap delay with delays of $\left[\begin{array}{lll}0 & 1 & 4\end{array}\right]$ is simulated at timestep 6 .

```
x = num2cell(rand(1,8));
```

$y=$ tapdelay $(x, 1,6,[014])$

See Also

extendts | nndata | preparets

Introduced in R2010b

timedelaynet

Time delay neural network

Syntax

timedelaynet(inputDelays,hiddenSizes,trainFcn)

Description

Time delay networks are similar to feedforward networks, except that the input weight has a tap delay line associated with it. This allows the network to have a finite dynamic response to time series input data. This network is also similar to the distributed delay neural network (distdelaynet), which has delays on the layer weights in addition to the input weight.
timedelaynet (inputDelays,hiddenSizes, trainFcn) takes these arguments,

inputDelays	Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes	Row vector of one or more hidden layer sizes (default = 10)
trainFcn	Training function (default = 'trainlm')

and returns a time delay neural network.

Examples

Train Time Delay Network and Predict on New Data

Partition the training set. Use Xnew to do prediction in closed loop mode later.

```
[X,T] = simpleseries_dataset;
Xnew = X(81:100);
X = X(1:80);
T = T(1:80);
```

Train a time delay network, and simulate it on the first 80 observations.

```
net = timedelaynet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
```


Calculate the network performance.

```
[Y,Xf,Af] = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y);
```

Run the prediction for 20 timesteps ahead in closed loop mode.

```
[netc,Xic,Aic] = closeloop(net,Xf,Af);
view(netc)
```



```
y2 = netc(Xnew,Xic,Aic);
```


See Also

distdelaynet | narnet | narxnet | preparets | removedelay

Introduced in R2010b

tonndata

Convert data to standard neural network cell array form

Syntax

[y,wasMatrix] = tonndata(x,columnSamples,cellTime)

Description

[y,wasMatrix] = tonndata(x,columnSamples,cellTime) takes these arguments,

x	Matrix or cell array of matrices
columnSamples	True if original samples are oriented as columns, false if rows
cellTime	True if original samples are columns of a cell array, false if they are stored in a matrix

and returns

y	Original data transformed into standard neural network cell array form
wasMatrix	True if original data was a matrix (as apposed to cell array)

If columnSamples is false, then matrix x or matrices in cell array x will be transposed, so row samples will now be stored as column vectors.

If celltime is false, then matrix samples will be separated into columns of a cell array so time originally represented as vectors in a matrix will now be represented as columns of a cell array.

The returned value wasMatrix can be used by fromnndata to reverse the transformation.

Examples

Here data consisting of six timesteps of 5 -element vectors, originally represented as a matrix with six columns, is converted to standard neural network representation and back.

```
x = rands (5,6)
columnSamples = true; % samples are by columns.
cellTime = false; % time-steps in matrix, not cell array.
[y,wasMatrix] = tonndata(x,columnSamples,cellTime)
x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)
```


See Also

fromnndata | nndata|nndata2sim | sim2nndata

Introduced in R2010b

train

Train neural network
For deep learning with convolutional neural networks, see trainNetwork instead.

Syntax

```
[net,tr] = train(net,X,T,Xi,Ai,EW)
[net, ___] = train(___,'useParallel', ___)
[net, ___] = train(___,'useGPU',___)
[net,____] = train(___,'showResources',____)
[net, ____] = train(Xcomposite,Tcomposite, ___)
[net,___] = train(Xgpu,Tgpu, ___)
net = train(___,'CheckpointFile','path/
name','CheckpointDelay',numDelays)
```


Description

train trains a network net according to net.trainFen and net.trainParam.
[net,tr] $=$ train(net, $X, T, X i, A i, E W)$ takes

net	Network
X	Network inputs
T	Network targets (default = zeros)
Xi	Initial input delay conditions (default = zeros)
Ai	Initial layer delay conditions (default = zeros)
EW	Error weights

and returns

net	Newly trained network
tr	Training record (epoch and perf)

Note that T is optional and need only be used for networks that require targets. Xi is also optional and need only be used for networks that have input or layer delays.
train arguments can have two formats: matrices, for static problems and networks with single inputs and outputs, and cell arrays for multiple timesteps and networks with multiple inputs and outputs.

The matrix format is as follows:

X	R-by-Q matrix
T	U-by-Q matrix

The cell array format is more general, and more convenient for networks with multiple inputs and outputs, allowing sequences of inputs to be presented.

X	Ni-by-TS cell array	Each element X\{i,ts $\}$ is an Ri-by-Q matrix.
T	No-by-TS cell array	Each element T $\{\mathrm{i}, \mathrm{ts}\}$ is a Ui-by-Q matrix.
Xi	Ni-by-ID cell array	Each element Xi $\{\mathrm{i}, \mathrm{k}\}$ is an Ri-by-Q matrix.
Ai	Nl-by-LD cell array	Each element Ai $\{i, \mathrm{k}\}$ is an Si-by-Q matrix.
EW	No-by-TS cell array	Each element EW $\{i$, ts $\}$ is a Ui-by-Q matrix

where

Ni	$=$	net. numInputs
Nl	$=$	net. numLayers
No	$=$	net. numOutputs
ID	$=$	net. numInputDelays
LD	$=$	Number of time steps
TS	$=$	Batch size
Q	$=$	net. inputs\{i\}.size
Ri	$=$	net.layers\{i\}.size
Si		

Ui	$=$	net.outputs\{i\}.size

The columns of Xi and Ai are ordered from the oldest delay condition to the most recent:

$\mathrm{Xi}\{i, k\}$	$=$	Input i at time $t s=k-I D$
$A i\{i, k\}$	$=$	Layer output i at time $t s=k-\mathrm{LD}$

The error weights EW can also have a size of 1 in place of all or any of No, TS, Ui or Q. In that case, EW is automatically dimension extended to match the targets T . This allows for conveniently weighting the importance in any dimension (such as per sample) while having equal importance across another (such as time, with $\mathrm{TS}=1$). If all dimensions are 1 , for instance if $E W=\{1\}$, then all target values are treated with the same importance. That is the default value of EW.

The matrix format can be used if only one time step is to be simulated ($\mathrm{TS}=1$). It is convenient for networks with only one input and output, but can be used with networks that have more.

Each matrix argument is found by storing the elements of the corresponding cell array argument in a single matrix:

X	(sum of Ri)-by-Q matrix
T	(sum of Ui)-by-Q matrix
Xi	(sum of Ri)-by-(ID*Q) matrix
Ai	(sum of Si)-by-(LD*Q) matrix
EW	(sum of $U i$)-by-Q matrix

As noted above, the error weights EW can be of the same dimensions as the targets T, or have some dimensions set to 1 . For instance if EW is 1 -by-Q, then target samples will have different importances, but each element in a sample will have the same importance. If EW is (sum of Ui)-by-Q, then each output element has a different importance, with all samples treated with the same importance.

The training record $T R$ is a structure whose fields depend on the network training function (net. NET.trainFcn). It can include fields such as:

- Training, data division, and performance functions and parameters
- Data division indices for training, validation and test sets
- Data division masks for training validation and test sets
- Number of epochs (num_epochs) and the best epoch (best_epoch).
- A list of training state names (states).
- Fields for each state name recording its value throughout training
- Performances of the best network (best_perf, best_vperf, best_tperf)
 optional name/value pair arguments to control how calculations are performed. Two of these options allow training to happen faster or on larger datasets using parallel workers or GPU devices if Parallel Computing Toolbox is available. These are the optional name/ value pairs:

'useParallel', 'no'	Calculations occur on normal MATLAB thread. This is the default 'useParallel ' setting.
'useParallel', 'yes'	Calculations occur on parallel workers if a parallel pool is open. Otherwise calculations occur on the normal MATLAB thread.
'useGPU', 'no'	Calculations occur on the CPU. This is the default 'useGPU' setting.
'useGPU', 'yes'	Calculations occur on the current gpuDevice if it is a supported GPU (See Parallel Computing Toolbox for GPU requirements.) If the current gpuDevice is not supported, calculations remain on the CPU. If 'useParallel' is also 'yes ' and a parallel pool is open, then each worker with a unique GPU uses that GPU, other workers run calculations on their respective CPU cores.
'useGPU', 'only'	If no parallel pool is open, then this setting is the same as 'yes '. If a parallel pool is open then only workers with unique GPUs are used. However, if a parallel pool is open, but no supported GPUs are available, then calculations revert to performing on all worker CPUs.
'showResources', no'	Do not display computing resources used at the command line. This is the default setting.
'showResources','yes	Show at the command line a summary of the computing resources actually used. The actual resources may differ from the requested resources, if parallel or GPU computing is requested but a parallel pool is not open or a supported GPU is not available. When parallel workers are used, each worker's computation mode is described, including workers in the pool that are not used.
'	

'reduction', N	For most neural networks, the default CPU training computation mode is a compiled MEX algorithm. However, for large networks the calculations might occur with a MATLAB calculation mode. This can be confirmed using ' showResources'. If MATLAB is being used and memory is an issue, setting the reduction option to a value N greater than 1, reduces much of the temporary storage required to train by a factor of N, in exchange for longer training times.

[net, ___ $]$ train(Xcomposite, Tcomposite, ___) takes Composite data and returns Composite results. If Composite data is used, then 'useParallel' is automatically set to 'yes'.
[net, ___] = train (Xgpu, Tgpu, ___) takes gpuArray data and returns gpuArray results. If gpuArray data is used, then 'useGPU' is automatically set to 'yes'.
net $=$ train(___,'CheckpointFile','path/
name', 'CheckpointDelay', numDelays) periodically saves intermediate values of the neural network and training record during training to the specified file. This protects training results from power failures, computer lock ups, Ctrl+C, or any other event that halts the training process before train returns normally.

The value for 'CheckpointFile' can be set to a filename to save in the current working folder, to a file path in another folder, or to an empty string to disable checkpoint saves (the default value).

The optional parameter 'CheckpointDelay' limits how often saves happen. Limiting the frequency of checkpoints can improve efficiency by keeping the amount of time saving checkpoints low compared to the time spent in calculations. It has a default value of 60 , which means that checkpoint saves do not happen more than once per minute. Set the value of 'CheckpointDelay' to 0 if you want checkpoint saves to occur only once every epoch.

Note Any NaN values in the inputs X or the targets T, are treated as missing data. If a column of X or T contains at least one NaN , that column is not used for training, testing, or validation.

Examples

Train and Plot Networks

Here input x and targets t define a simple function that you can plot:

```
x = [lllllllllll}
t = [0 0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66 0.99];
plot(x,t,'O')
```

Here feedforwardnet creates a two-layer feed-forward network. The network has one hidden layer with ten neurons.

```
net = feedforwardnet(10);
net = configure(net,x,t);
y1 = net(x)
plot(x,t,'○',x,y1,'x')
```

The network is trained and then resimulated.

```
net = train(net,x,t);
y2 = net(x)
plot(x,t,'o',x,y1,'x',x,y2,'*')
```


Train NARX Time Series Network

This example trains an open-loop nonlinear-autoregressive network with external input, to model a levitated magnet system defined by a control current x and the magnet's vertical position response t, then simulates the network. The function preparets prepares the data before training and simulation. It creates the open-loop network's combined inputs xo, which contains both the external input x and previous values of position t. It also prepares the delay states xi.

```
[x,t] = maglev_dataset;
net = narxnet(10);
[xo,xi,~,to] = preparets(net,x,{},t);
net = train(net,xo,to,xi);
y = net(xo,xi)
```

This same system can also be simulated in closed-loop form.

```
netc = closeloop(net);
view(netc)
```

```
[xc,xi,ai,tc] = preparets(netc,x,{},t);
yc = netc(xc,xi,ai);
```


Train a Network in Parallel on a Parallel Pool

Parallel Computing Toolbox allows Neural Network Toolbox to simulate and train networks faster and on larger datasets than can fit on one PC. Parallel training is currently supported for backpropagation training only, not for self-organizing maps.

Here training and simulation happens across parallel MATLAB workers.

```
parpool
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useParallel','yes','showResources','yes');
Y = net(X);
```

Use Composite values to distribute the data manually, and get back the results as a Composite value. If the data is loaded as it is distributed then while each piece of the dataset must fit in RAM, the entire dataset is limited only by the total RAM of all the workers.

```
[X,T] = vinyl_dataset;
Q = size(X,2);
Xc = Composite;
Tc = Composite;
numWorkers = numel(Xc);
ind = [0 ceil((1:4)*(Q/4))];
for i=1:numWorkers
    indi = (ind(i)+1):ind(i+1);
    Xc{i} = X(:,indi);
    Tc{i} = T(:,indi);
end
net = feedforwardnet;
net = configure(net,X,T);
net = train(net,Xc,Tc);
Yc = net(Xc);
```

Note in the example above the function configure was used to set the dimensions and processing settings of the network's inputs. This normally happens automatically when train is called, but when providing composite data this step must be done manually with non-Composite data.

Train a Network on GPUs

Networks can be trained using the current GPU device, if it is supported by Parallel Computing Toolbox. GPU training is currently supported for backpropagation training only, not for self-organizing maps.

```
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useGPU','yes');
y = net(X);
```

To put the data on a GPU manually:

```
[X,T] = vinyl_dataset;
Xgpu = gpuArray(X);
Tgpu = gpuArray(T);
net = configure(net,X,T);
net = train(net,Xgpu,Tgpu);
Ygpu = net(Xgpu);
Y = gather(Ygpu);
```

Note in the example above the function configure was used to set the dimensions and processing settings of the network's inputs. This normally happens automatically when train is called, but when providing gpuArray data this step must be done manually with non-gpuArray data.

To run in parallel, with workers each assigned to a different unique GPU, with extra workers running on CPU:

```
net = train(net,X,T,'useParallel','yes','useGPU','yes');
y = net(X);
```

Using only workers with unique GPUs might result in higher speed, as CPU workers might not keep up.

```
net = train(net,X,T,'useParallel','yes','useGPU','only');
Y = net (X);
```


Train Network Using Checkpoint Saves

Here a network is trained with checkpoints saved at a rate no greater than once every two minutes.

```
[x,t] = vinyl_dataset;
net = fitnet([60 30]);
net = train(net,x,t,'CheckpointFile','MyCheckpoint','CheckpointDelay',120);
```

After a computer failure, the latest network can be recovered and used to continue training from the point of failure. The checkpoint file includes a structure variable checkpoint, which includes the network, training record, filename, time, and number.

```
[x,t] = vinyl_dataset;
load MyCheckpoint
net = checkpoint.net;
net = train(net,x,t,'CheckpointFile','MyCheckpoint');
```

Another use for the checkpoint feature is when you stop a parallel training session (started with the 'UseParallel' parameter) even though the Neural Network Training Tool is not available during parallel training. In this case, set a 'CheckpointFile', use Ctrl+C to stop training any time, then load your checkpoint file to get the network and training record.

Algorithms

train calls the function indicated by net. trainFen, using the training parameter values indicated by net.trainParam.

Typically one epoch of training is defined as a single presentation of all input vectors to the network. The network is then updated according to the results of all those presentations.

Training occurs until a maximum number of epochs occurs, the performance goal is met, or any other stopping condition of the function net. trainFen occurs.

Some training functions depart from this norm by presenting only one input vector (or sequence) each epoch. An input vector (or sequence) is chosen randomly for each epoch from concurrent input vectors (or sequences). competlayer returns networks that use trainru, a training function that does this.

See Also

adapt | init | revert | sim

Introduced before R2006a

trainb

Batch training with weight and bias learning rules

Syntax

```
net.trainFcn = 'trainb'
[net,tr] = train(net,...)
```


Description

trainb is not called directly. Instead it is called by train for networks whose net.trainFen property is set to 'trainb', thus:
net.trainFcn = 'trainb' sets the network trainFcn property.
[net,tr] = train(net,...) trains the network with trainb.
trainb trains a network with weight and bias learning rules with batch updates. The weights and biases are updated at the end of an entire pass through the input data.

Training occurs according to trainb's training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.min_grad	$1 e-6$	Minimum performance gradient
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLin e	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses trainb by calling linearlayer.
To prepare a custom network to be trained with trainb,
1 Set net.trainFcn to 'trainb'. This sets net.trainParam to trainb's default parameters.
2 Set each net.inputWeights\{i,j\}.learnFcn to a learning function. Set each net. layerWeights $\{i, j\}$. learnFen to a learning function. Set each net.biases \{i\}.learnFcn to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network,
1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Calltrain.

Algorithms

Each weight and bias is updated according to its learning function after each epoch (one pass through the entire set of input vectors).

Training stops when any of these conditions is met:

- The maximum number of epochs (repetitions) is reached.
- Performance is minimized to the goal.
- The maximum amount of time is exceeded.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

See Also

linearlayer | train

Introduced before R2006a

trainbfg

BFGS quasi-Newton backpropagation

Syntax

```
net.trainFcn = 'trainbfg'
[net,tr] = train(net,...)
```


Description

trainbfg is a network training function that updates weight and bias values according to the BFGS quasi-Newton method.
net.trainFcn = 'trainbfg' sets the network trainFcn property.
[net,tr] = train(net,...) trains the network with trainbfg.
Training occurs according to trainbfg training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.showWindow	true	Show training window
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.goal	0	Performance goal
net.trainParam.time	inf	Maximum time to train in seconds
net.trainParam.min_grad	$1 \mathrm{e}-6$	Minimum performance gradient
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.searchFcn	'srchbac'	Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol	20	Divide into delta to determine tolerance for linear search.
net.trainParam.alpha	0.001	Scale factor that determines sufficient reduction in perf
net.trainParam.beta	0.1	Scale factor that determines sufficiently large step size
net.trainParam.delta	0.01	Initial step size in interval location step
net.trainParam.gama	0.1	Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)
net.trainParam.low_lim	0.1	Lower limit on change in step size
net.trainParam.up_lim	0.5	Upper limit on change in step size
net.trainParam.maxstep	100	Maximum step length
net.trainParam.minstep	$1.0 \mathrm{e}-6$	Minimum step length
net.trainParam.bmax	26	Maximum step size
net.trainParam.batch_frag	0	In case of multiple batches, they are considered independent. Any nonzero value implies a fragmented batch, so the final layer's conditions of a previous trained epoch are used as initial conditions for the next epoch.

Network Use

You can create a standard network that uses trainbfg with feedfowardnet or cascadeforwardnet. To prepare a custom network to be trained with trainbfg:

1 Set NET.trainFen to 'trainbfg'. This sets NET.trainParam to trainbfg's default parameters.
2 Set NET.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with trainbfg.

Examples

Train Neural Network Using trainbfg Train Function

This example shows how to train a neural network using the trainbfg train function.
Here a neural network is trained to predict body fat percentages.

```
[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'trainbfg');
net = train(net, x, t);
y = net (x);
```


Definitions

BFGS Quasi-Newton Backpropagation

Newton's method is an alternative to the conjugate gradient methods for fast optimization. The basic step of Newton's method is

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\mathbf{A}_{k}^{-1} \mathbf{g}_{k}
$$

where \mathbf{A}_{k}^{-1} is the Hessian matrix (second derivatives) of the performance index at the current values of the weights and biases. Newton's method often converges faster than conjugate gradient methods. Unfortunately, it is complex and expensive to compute the Hessian matrix for feedforward neural networks. There is a class of algorithms that is based on Newton's method, but which does not require calculation of second derivatives. These are called quasi-Newton (or secant) methods. They update an approximate Hessian matrix at each iteration of the algorithm. The update is computed as a function of the gradient. The quasi-Newton method that has been most successful in published studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update. This algorithm is implemented in the trainbfg routine.

The BFGS algorithm is described in [DeSc83]. This algorithm requires more computation in each iteration and more storage than the conjugate gradient methods, although it generally converges in fewer iterations. The approximate Hessian must be stored, and its dimension is $n \times n$, where n is equal to the number of weights and biases in the network.

For very large networks it might be better to use Rprop or one of the conjugate gradient algorithms. For smaller networks, however, trainbfg can be an efficient training function.

Algorithms

trainbfg can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:

```
x = x + a*dx;
```

where $d x$ is the search direction. The parameter a is selected to minimize the performance along the search direction. The line search function searchFcn is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed according to the following formula:

```
dX = -H\gX;
```

where gX is the gradient and H is a approximate Hessian matrix. See page 119 of Gill, Murray, and Wright (Practical Optimization, 1981) for a more detailed discussion of the BFGS quasi-Newton method.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

References

Gill, Murray, \& Wright, Practical Optimization, 1981

See Also
 cascadeforwardnet | feedforwardnet | traincgb | traincgf | traincgp | traingda | traingdm | traingdx \| trainlm | trainoss | trainrp | trainscg
 Introduced before R2006a

trainbfgc

BFGS quasi-Newton backpropagation for use with NN model reference adaptive controller

Syntax

[net, TR, Y, E, Pf, Af,flag_stop] = trainbfgc(net, P, T, Pi, Ai, epochs, TS, Q) info = trainbfgc (code)

Description

trainbfgc is a network training function that updates weight and bias values according to the BFGS quasi-Newton method. This function is called from nnmodref, a GUI for the model reference adaptive control Simulink block.
[net,TR,Y,E,Pf,Af,flag_stop] = trainbfgc(net, P, T,Pi,Ai,epochs,TS,Q) takes these inputs,

net	Neural network
P	Delayed input vectors
T	Layer target vectors
Pi	Initial input delay conditions
Ai	Initial layer delay conditions
epochs	Number of iterations for training
TS	Time steps
Q	Batch size

and returns

net	Trained network
TR	Training record of various values over each epoch:
	TR. epoch Epoch number

	TR.perf Training performance
	TR.vperf Validation performance
Y	TR.tperf Test performance
E	Network output for last epoch
Pf	Layer errors for last epoch
Af	Final input delay conditions
flag_stop	Collective layer outputs for last epoch

Training occurs according to trainbfgc's training parameters, shown here with their default values:

net.trainParam.epochs	100	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.goal	0	Performance goal
net.trainParam.time	inf	Maximum time to train in seconds
net.trainParam.min_grad	$1 e-6$	Minimum performance gradient
net.trainParam.max_fail	5	Maximum validation failures
net.trainParam.searchFcn	'srchbac ''	Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol	20	Divide into delta to determine tolerance for linear search.
net.trainParam.alpha	0.001	Scale factor that determines sufficient reduction in perf
net.trainParam.beta	0.1	Scale factor that determines sufficiently large step size
net.trainParam.delta	0.01	Initial step size in interval location step
net.trainParam.gama	0.1	Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)
net.trainParam.low_lim	0.1	Lower limit on change in step size

net.trainParam.up_lim	0.5	Upper limit on change in step size
net.trainParam.maxstep	100	Maximum step length
net.trainParam.minstep	$1.0 e-6$	Minimum step length
net.trainParam.bmax	26	Maximum step size

info = trainbfgc (code) returns useful information for each code string:

'pnames'	Names of training parameters
'pdefaults'	Default training parameters

Algorithms

trainbfgc can train any network as long as its weight, net input, and transfer functions have derivative functions. Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:

```
X = X + a*dX;
```

where $d X$ is the search direction. The parameter a is selected to minimize the performance along the search direction. The line search function searchFen is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed according to the following formula:

```
dX = -H\gX;
```

where gX is the gradient and H is an approximate Hessian matrix. See page 119 of Gill, Murray, and Wright (Practical Optimization, 1981) for a more detailed discussion of the BFGS quasi-Newton method.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Precision problems have occurred in the matrix inversion.

References

Gill, Murray, and Wright, Practical Optimization, 1981
Introduced in R2006a

trainbr

Bayesian regularization backpropagation

Syntax

```
net.trainFcn = 'trainbr'
[net,tr] = train(net,...)
```


Description

trainbr is a network training function that updates the weight and bias values according to Levenberg-Marquardt optimization. It minimizes a combination of squared errors and weights, and then determines the correct combination so as to produce a network that generalizes well. The process is called Bayesian regularization.
net.trainFcn $=$ 'trainbr' sets the network trainFen property.
[net,tr] $=$ train(net, ...) trains the network with trainbr.
Training occurs according to trainbr training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.mu	0.005	Marquardt adjustment parameter
net.trainParam.mu_dec	0.1	Decrease factor for mu
net.trainParam.mu_inc	10	Increase factor for mu
net.trainParam.mu_max	$1 e 10$	Maximum value for mu
net.trainParam.max_fail	0	Maximum validation failures
net.trainParam.min_grad	$1 e-7$	Minimum performance gradient
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output

net.trainParam.showWindow	true	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Validation stops are disabled by default (max_fail $=0$) so that training can continue until an optimal combination of errors and weights is found. However, some weight/bias minimization can still be achieved with shorter training times if validation is enabled by setting max_fail to 6 or some other strictly positive value.

Network Use

You can create a standard network that uses trainbr with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with trainbr,

1 Set NET.trainFen to 'trainbr'. This sets NET.trainParam to trainbr's default parameters.
2 Set NET.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with trainbr. See feedforwardnet and cascadeforwardnet for examples.

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network. It involves fitting a noisy sine wave.

```
p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));
```

A feed-forward network is created with a hidden layer of 2 neurons.

```
net = feedforwardnet(2,'trainbr');
```

Here the network is trained and tested.

```
net = train(net,p,t);
a = net(p)
```


Limitations

This function uses the Jacobian for calculations, which assumes that performance is a mean or sum of squared errors. Therefore networks trained with this function must use either the mse or sse performance function.

Algorithms

trainbr can train any network as long as its weight, net input, and transfer functions have derivative functions.

Bayesian regularization minimizes a linear combination of squared errors and weights. It also modifies the linear combination so that at the end of training the resulting network has good generalization qualities. See MacKay (Neural Computation, Vol. 4, No. 3, 1992, pp. 415 to 447) and Foresee and Hagan (Proceedings of the International Joint Conference on Neural Networks, June, 1997) for more detailed discussions of Bayesian regularization.

This Bayesian regularization takes place within the Levenberg-Marquardt algorithm. Backpropagation is used to calculate the Jacobian $j X$ of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to LevenbergMarquardt,

```
jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je
```

where E is all errors and I is the identity matrix.
The adaptive value mu is increased by mu_inc until the change shown above results in a reduced performance value. The change is then made to the network, and mu is decreased by mu_dec.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- mu exceeds mu_max.

References

[1] MacKay, David J. C. "Bayesian interpolation." Neural computation. Vol. 4, No. 3, 1992, pp. 415-447.
[2] Foresee, F. Dan, and Martin T. Hagan. "Gauss-Newton approximation to Bayesian learning." Proceedings of the International Joint Conference on Neural Networks, June, 1997.

See Also

cascadeforwardnet \| feedforwardnet | trainbfg | traincgb | traincgf | traincgp | traingda | traingdm | traingdx | trainlm | trainrp | trainscg

Introduced before R2006a

trainbu

Batch unsupervised weight/bias training

Syntax

```
net.trainFcn = 'trainbu'
[net,tr] = train(net,...)
```


Description

trainbu trains a network with weight and bias learning rules with batch updates. Weights and biases updates occur at the end of an entire pass through the input data.
trainbu is not called directly. Instead the train function calls it for networks whose NET.trainFen property is set to 'trainbu', thus:
net.trainFcn = 'trainbu' sets the network trainFcn property.
[net, tr] $=$ train(net,...) trains the network with trainbu.
Training occurs according to trainbu training parameters, shown here with the following default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showGUI	true	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Validation and test vectors have no impact on training for this function, but act as independent measures of network generalization.

Network Use

You can create a standard network that uses trainbu by calling selforgmap. To prepare a custom network to be trained with trainbu:

1 Set NET.trainFen to 'trainbu'. (This option sets NET.trainParam to trainbu default parameters.)
2 Set each NET. inputWeights $\{i, j\}$. learnFcn to a learning function.
3 Set each NET. layerWeights $\{i, j\}$. learnFcn to a learning function.
4 Set each NET.biases\{i\}.learnFcn to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network:
1 Set NET.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Calltrain.
See selforgmap for training examples.

Algorithms

Each weight and bias updates according to its learning function after each epoch (one pass through the entire set of input vectors).

Training stops when any of these conditions is met:

- The maximum number of epochs (repetitions) is reached.
- Performance is minimized to the goal.
- The maximum amount of time is exceeded.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

See Also

train | trainb

Introduced in R2010b

trainc

Cyclical order weight/bias training

Syntax

```
net.trainFcn = 'trainc'
[net,tr] = train(net,...)
```


Description

trainc is not called directly. Instead it is called by train for networks whose net.trainFcn property is set to 'trainc', thus:
net.trainFcn = 'trainc' sets the network trainFcn property.
[net,tr] $=$ train(net,...) trains the network with trainc.
trainc trains a network with weight and bias learning rules with incremental updates after each presentation of an input. Inputs are presented in cyclic order.

Training occurs according to trainc training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses trainc by calling competlayer. To prepare a custom network to be trained with trainc,

1 Set net.trainFen to 'trainc'. This sets net.trainParam to trainc's default parameters.
2 Set each net.inputWeights\{i,j\}.learnFcn to a learning function. Set each net.layerWeights\{i,j\}.learnFcn to a learning function. Set each net.biases \{i\}.learnFcn to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network,
1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Calltrain.
See perceptron for training examples.

Algorithms

For each epoch, each vector (or sequence) is presented in order to the network, with the weight and bias values updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

- The maximum number of epochs (repetitions) is reached.
- Performance is minimized to the goal.
- The maximum amount of time is exceeded.

See Also

competlayer | train

Introduced before R2006a

traincgb

Conjugate gradient backpropagation with Powell-Beale restarts

Syntax

```
net.trainFcn = 'traincgb'
[net,tr] = train(net,...)
```


Description

traincgb is a network training function that updates weight and bias values according to the conjugate gradient backpropagation with Powell-Beale restarts.
net.trainFcn = 'traincgb' sets the network trainFcn property.
[net,tr] = train(net,...) trains the network with traincgb.
Training occurs according to traincgb training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI
net.trainParam.goal	0	Performance goal
net.trainParam.time	inf	Maximum time to train in seconds
net.trainParam.min_grad	1e-10	Minimum performance gradient
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.searchFcn	'srchc ha'	Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol	20	Divide into delta to determine tolerance for linear search.
net.trainParam.alpha	0.001	Scale factor that determines sufficient reduction in perf
net.trainParam.beta	0.1	Scale factor that determines sufficiently large step size
net.trainParam.delta	0.01	Initial step size in interval location step
net.trainParam.gama	0.1	Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)
net.trainParam.low_lim	0.1	Lower limit on change in step size
net.trainParam.up_lim	0.5	Upper limit on change in step size
net.trainParam.maxstep	100	Maximum step length
net.trainParam.minstep	$1.0 \mathrm{e}-6$	Minimum step length
net.trainParam.bmax	26	Maximum step size

Network Use

You can create a standard network that uses traincgb with feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with traincgb,
1 Set net.trainFcn to 'traincgb'. This sets net.trainParam to traincgb's default parameters.

2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with traincgb.

Examples

Train Neural Network Using traincgb Train Function

This example shows how to train a neural network using the traincgb train function.
Here a neural network is trained to predict body fat percentages.

```
[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'traincgb');
net = train(net, x, t);
y = net(x);
```


Definitions

Powell-Beale Algorithm

For all conjugate gradient algorithms, the search direction is periodically reset to the negative of the gradient. The standard reset point occurs when the number of iterations is equal to the number of network parameters (weights and biases), but there are other reset methods that can improve the efficiency of training. One such reset method was proposed by Powell [Powe77], based on an earlier version proposed by Beale [Beal72]. This technique restarts if there is very little orthogonality left between the current gradient and the previous gradient. This is tested with the following inequality:

$$
\left|\mathbf{g}_{k-1}^{T} \mathbf{g}_{k}\right| \geq 0.2\left\|\mathbf{g}_{k}\right\|^{2}
$$

If this condition is satisfied, the search direction is reset to the negative of the gradient.
The traincgb routine has somewhat better performance than traincgp for some problems, although performance on any given problem is difficult to predict. The storage requirements for the Powell-Beale algorithm (six vectors) are slightly larger than for Polak-Ribiére (four vectors).

Algorithms

traincgb can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:

```
X = X + a*dX;
```

where $d x$ is the search direction. The parameter a is selected to minimize the performance along the search direction. The line search function searchFcn is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed from the new gradient and the previous search direction according to the formula

```
dX = -gX + dX_old*Z;
```

where $g X$ is the gradient. The parameter Z can be computed in several different ways. The Powell-Beale variation of conjugate gradient is distinguished by two features. First, the algorithm uses a test to determine when to reset the search direction to the negative of the gradient. Second, the search direction is computed from the negative gradient, the previous search direction, and the last search direction before the previous reset. See Powell, Mathematical Programming, Vol. 12, 1977, pp. 241 to 254, for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

References

Powell, M.J.D., "Restart procedures for the conjugate gradient method," Mathematical Programming, Vol. 12, 1977, pp. 241-254

See Also

trainbfg | traincgf | traincgp | traingda | traingdm | traingdx | trainlm | trainoss | trainscg

Introduced before R2006a

traincgf

Conjugate gradient backpropagation with Fletcher-Reeves updates

Syntax

```
net.trainFcn = 'traincgf'
[net,tr] = train(net,...)
```


Description

traincg f is a network training function that updates weight and bias values according to conjugate gradient backpropagation with Fletcher-Reeves updates.
net.trainFcn = 'traincgf' sets the network trainFcn property.
[net,tr] = train(net,...) trains the network with traincgf.
Training occurs according to traincgf training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI
net.trainParam.goal	0	Performance goal
net.trainParam.time	inf	Maximum time to train in seconds
net.trainParam.min_grad	$1 \mathrm{e}-10$	Minimum performance gradient
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.searchFcn	'srchch a^{\prime}	Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol	20	Divide into delta to determine tolerance for linear search.
net.trainParam.alpha	0.001	Scale factor that determines sufficient reduction in perf
net.trainParam.beta	0.1	Scale factor that determines sufficiently large step size
net.trainParam.delta	0.01	Initial step size in interval location step
net.trainParam.gama	0.1	Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)
net.trainParam.low_lim	0.1	Lower limit on change in step size
net.trainParam.up_lim	0.5	Upper limit on change in step size
net.trainParam.maxstep	100	Maximum step length
net.trainParam.minstep	$1.0 e-6$	Minimum step length
net.trainParam.bmax	26	Maximum step size

Network Use

You can create a standard network that uses traincgf with feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with traincgf,
1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf's default parameters.

2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with traincgf.

Examples

Train Neural Network Using traincgf Train Function

This example shows how to train a neural network using the traincgf train function.
Here a neural network is trained to predict body fat percentages.

```
[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'traincgf');
net = train(net, x, t);
y = net (x);
```


Definitions

Conjugate Gradient Algorithms

All the conjugate gradient algorithms start out by searching in the steepest descent direction (negative of the gradient) on the first iteration.

$$
\mathbf{p}_{0}=-\mathbf{g}_{0}
$$

A line search is then performed to determine the optimal distance to move along the current search direction:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k} \alpha_{k} \mathbf{p}_{k}
$$

Then the next search direction is determined so that it is conjugate to previous search directions. The general procedure for determining the new search direction is to combine the new steepest descent direction with the previous search direction:

$$
\mathbf{p}_{k}=-\mathbf{g}_{k}+\beta_{k} \mathbf{p}_{k-1}
$$

The various versions of the conjugate gradient algorithm are distinguished by the manner in which the constant β_{k} is computed. For the Fletcher-Reeves update the procedure is

$$
\beta_{k}=\frac{\mathbf{g}_{k}^{T} \mathbf{g}_{k}}{\mathbf{g}_{k-1}^{T} \mathbf{g}_{k-1}}
$$

This is the ratio of the norm squared of the current gradient to the norm squared of the previous gradient.

See [FlRe64] or [HDB96] for a discussion of the Fletcher-Reeves conjugate gradient algorithm.

The conjugate gradient algorithms are usually much faster than variable learning rate backpropagation, and are sometimes faster than trainrp, although the results vary from one problem to another. The conjugate gradient algorithms require only a little more storage than the simpler algorithms. Therefore, these algorithms are good for networks with a large number of weights.

Try the Neural Network Design demonstration nnd12cg [HDB96] for an illustration of the performance of a conjugate gradient algorithm.

Algorithms

traincgf can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:
$\mathrm{X}=\mathrm{X}+\mathrm{a}$ * dX ;
where $d x$ is the search direction. The parameter a is selected to minimize the performance along the search direction. The line search function searchFen is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed from the new gradient and the previous search direction, according to the formula

```
dX = -gX + dX_old*Z;
```

where $g X$ is the gradient. The parameter Z can be computed in several different ways. For the Fletcher-Reeves variation of conjugate gradient it is computed according to

Z = normnew_sqr/norm_sqr;
where norm_sqr is the norm square of the previous gradient and normnew_sqr is the norm square of the current gradient. See page 78 of Scales (Introduction to Non-Linear Optimization) for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

References

Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also

trainbfg | traincgb | traincgp | traingda | traingdm | traingdx | trainlm |
trainoss | trainscg

Introduced before R2006a

traincgp

Conjugate gradient backpropagation with Polak-Ribiére updates

Syntax

```
net.trainFcn = 'traincgp'
[net,tr] = train(net,...)
```


Description

traincgp is a network training function that updates weight and bias values according to conjugate gradient backpropagation with Polak-Ribiére updates.
net.trainFcn = 'traincgp' sets the network trainFcn property.
[net,tr] $=$ train(net,...) trains the network with traincgp.
Training occurs according to traincgp training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI
net.trainParam.goal	0	Performance goal
net.trainParam.time	inf	Maximum time to train in seconds
net.trainParam.min_grad	$1 \mathrm{e}-10$	Minimum performance gradient
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.searchFcn	'srchch a'	Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol	20	Divide into delta to determine tolerance for linear search.
net.trainParam.alpha	0.001	Scale factor that determines sufficient reduction in perf
net.trainParam.beta	0.1	Scale factor that determines sufficiently large step size
net.trainParam.delta	0.01	Initial step size in interval location step
net.trainParam.gama	0.1	Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)
net.trainParam.low_lim	0.1	Lower limit on change in step size
net.trainParam.up_lim	0.5	Upper limit on change in step size
net.trainParam.maxstep	100	Maximum step length
net.trainParam.minstep	$1.0 e-6$	Minimum step length
net.trainParam.bmax	26	Maximum step size

Network Use

You can create a standard network that uses traincgp with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with traincgp,

1 Set net.trainFcn to 'traincgp'. This sets net.trainParam to traincgp's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with traincgp.

Examples

Train Neural Network Using traincgp Train Function

This example shows how to train a neural network using the traincgp train function.

Here a neural network is trained to predict body fat percentages.

```
[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'traincgp');
net = train(net, x, t);
y = net(x);
```


Definitions

Conjugate Gradient Backpropagation with Polak-Ribiére Updates

Another version of the conjugate gradient algorithm was proposed by Polak and Ribiére. As with the Fletcher-Reeves algorithm, traincgf, the search direction at each iteration is determined by

$$
\mathbf{p}_{k}=-\mathbf{g}_{k}+\beta_{k} \mathbf{p}_{k-1}
$$

For the Polak-Ribiére update, the constant B_{k} is computed by

$$
\beta_{k}=\frac{\Delta \mathbf{g}_{k-1}^{T} \mathbf{g}_{k}}{\mathbf{g}_{k-1}^{T} \mathbf{g}_{k-1}}
$$

This is the inner product of the previous change in the gradient with the current gradient divided by the norm squared of the previous gradient. See [FlRe64] or [HDB96] for a discussion of the Polak-Ribiére conjugate gradient algorithm.

The traincgp routine has performance similar to traincgf. It is difficult to predict which algorithm will perform best on a given problem. The storage requirements for Polak-Ribiére (four vectors) are slightly larger than for Fletcher-Reeves (three vectors).

Algorithms

traincgp can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:

```
X = X + a*dX;
```

where $d x$ is the search direction. The parameter a is selected to minimize the performance along the search direction. The line search function searchFen is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed from the new gradient and the previous search direction according to the formula

```
dX = -gX + dX_old*Z;
```

where gX is the gradient. The parameter Z can be computed in several different ways. For the Polak-Ribiére variation of conjugate gradient, it is computed according to

```
Z = ((gX - gX_old)'*gX)/norm_sqr;
```

where norm_sqr is the norm square of the previous gradient, and gX_old is the gradient on the previous iteration. See page 78 of Scales (Introduction to Non-Linear Optimization, 1985) for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

References

Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also

trainbfg | traincgb | traincgf | traingda | traingdm | traingdx | trainlm | trainoss | trainrp | trainscg

Introduced before R2006a

traingd

Gradient descent backpropagation

Syntax

```
net.trainFcn = 'traingd'
[net,tr] = train(net,...)
```


Description

traingd is a network training function that updates weight and bias values according to gradient descent.

```
net.trainFcn = 'traingd' sets the network trainFcn property.
```

[net, tr] $=$ train(net, ...) trains the network with traingd.
Training occurs according to traingd training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI
net.trainParam.lr	0.01	Learning rate
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.min_grad	$1 \mathrm{e}-5$	Minimum performance gradient
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.time	inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses traingd with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with traingd,

1 Set net.trainFcn to 'traingd'. This sets net.trainParam to traingd's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with traingd.

See help feedforwardnet and help cascadeforwardnet for examples.

Definitions

Gradient Descent Backpropagation

The batch steepest descent training function is traingd. The weights and biases are updated in the direction of the negative gradient of the performance function. If you want to train a network using batch steepest descent, you should set the network trainFcn to traingd, and then call the function train. There is only one training function associated with a given network.

There are seven training parameters associated with traingd:

- epochs
- show
- goal
- time
- min_grad
- max_fail
- lr

The learning rate lr is multiplied times the negative of the gradient to determine the changes to the weights and biases. The larger the learning rate, the bigger the step. If
the learning rate is made too large, the algorithm becomes unstable. If the learning rate is set too small, the algorithm takes a long time to converge. See page 12-8 of [HDB96] for a discussion of the choice of learning rate.

The training status is displayed for every show iterations of the algorithm. (If show is set to NaN, then the training status is never displayed.) The other parameters determine when the training stops. The training stops if the number of iterations exceeds epochs, if the performance function drops below goal, if the magnitude of the gradient is less than mingrad, or if the training time is longer than time seconds. max_fail, which is associated with the early stopping technique, is discussed in Improving Generalization.

The following code creates a training set of inputs p and targets t. For batch training, all the input vectors are placed in one matrix.

```
p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];
```

Create the feedforward network.

```
net = feedforwardnet(3,'traingd');
```

In this simple example, turn off a feature that is introduced later.

```
net.divideFcn = '';
```

At this point, you might want to modify some of the default training parameters.

```
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
```

If you want to use the default training parameters, the preceding commands are not necessary.

Now you are ready to train the network.

```
[net,tr] = train(net,p,t);
```

The training record tr contains information about the progress of training.
Now you can simulate the trained network to obtain its response to the inputs in the training set.

```
a = net(p)
a =
    -1.0026 -0.9962 1.0010 0.9960
```

Try the Neural Network Design demonstration nnd12sd1 [HDB96] for an illustration of the performance of the batch gradient descent algorithm.

Algorithms

traingd can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to gradient descent:

```
dX = lr * dperf/dX
```

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

See Also
 traingda | traingdm | traingdx | trainlm
 Introduced before R2006a

traingda

Gradient descent with adaptive learning rate backpropagation

Syntax

```
net.trainFcn = 'traingda'
[net,tr] = train(net,...)
```


Description

traingda is a network training function that updates weight and bias values according to gradient descent with adaptive learning rate.
net.trainFcn = 'traingda' sets the network trainFcn property.
[net, tr] $=$ train(net, ...) trains the network with traingda.
Training occurs according to traingda training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.lr	0.01	Learning rate
net.trainParam.lr_inc	1.05	Ratio to increase learning rate
net.trainParam.lr_dec	0.7	Ratio to decrease learning rate
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.max_perf_inc	1.04	Maximum performance increase
net.trainParam.min_grad	$1 \mathrm{e}-5$	Minimum performance gradient
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI

net.trainParam.time	inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses traingda with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with traingda,

1 Set net.trainFen to 'traingda'. This sets net.trainParam to traingda's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with traingda.

See help feedforwardnet and help cascadeforwardnet for examples.

Definitions

Gradient Descent with Adaptive Learning Rate Backpropagation

With standard steepest descent, the learning rate is held constant throughout training. The performance of the algorithm is very sensitive to the proper setting of the learning rate. If the learning rate is set too high, the algorithm can oscillate and become unstable. If the learning rate is too small, the algorithm takes too long to converge. It is not practical to determine the optimal setting for the learning rate before training, and, in fact, the optimal learning rate changes during the training process, as the algorithm moves across the performance surface.

You can improve the performance of the steepest descent algorithm if you allow the learning rate to change during the training process. An adaptive learning rate attempts to keep the learning step size as large as possible while keeping learning stable. The learning rate is made responsive to the complexity of the local error surface.

An adaptive learning rate requires some changes in the training procedure used by traingd. First, the initial network output and error are calculated. At each epoch new weights and biases are calculated using the current learning rate. New outputs and errors are then calculated.

As with momentum, if the new error exceeds the old error by more than a predefined ratio, max_perf_inc (typically 1.04), the new weights and biases are discarded. In addition, the learning rate is decreased (typically by multiplying by lr_dec $=0.7$). Otherwise, the new weights, etc., are kept. If the new error is less than the old error, the learning rate is increased (typically by multiplying by lr_inc $=1.05$).

This procedure increases the learning rate, but only to the extent that the network can learn without large error increases. Thus, a near-optimal learning rate is obtained for the local terrain. When a larger learning rate could result in stable learning, the learning rate is increased. When the learning rate is too high to guarantee a decrease in error, it is decreased until stable learning resumes.

Try the Neural Network Design demonstration nnd12vl [HDB96] for an illustration of the performance of the variable learning rate algorithm.

Backpropagation training with an adaptive learning rate is implemented with the function traingda, which is called just like traingd, except for the additional training parameters max_perf_inc, lr_dec, and lr_inc. Here is how it is called to train the previous two-layer network:

```
p = [-1 -1 2 2; 0 5 0 5];
t = [l-1 -1 1 1];
net = feedforwardnet(3,'traingda');
net.trainParam.lr = 0.05;
net.trainParam.lr_inc = 1.05;
net = train(net,p,t);
y = net(p)
```


Algorithms

traingda can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance dperf with respect to the weight and bias variables X. Each variable is adjusted according to gradient descent:

```
dX = lr*dperf/dX
```

At each epoch, if performance decreases toward the goal, then the learning rate is increased by the factor lr_inc. If performance increases by more than the factor
max_perf_inc, the learning rate is adjusted by the factor lr_dec and the change that increased the performance is not made.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

See Also

traingd | traingdm | traingdx | trainlm

Introduced before R2006a

traingdm

Gradient descent with momentum backpropagation

Syntax

```
net.trainFcn = 'traingdm'
[net,tr] = train(net,...)
```


Description

traingdm is a network training function that updates weight and bias values according to gradient descent with momentum.
net.trainFcn = 'traingdm' sets the network trainFcn property.
[net,tr] = train(net,...) trains the network with traingdm.
Training occurs according to traingdm training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.lr	0.01	Learning rate
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.mc	0.9	Momentum constant
net.trainParam.min_grad	$1 e-5$	Minimum performance gradient
net.trainParam.show	25	Epochs between showing progress
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses traingdm with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with traingdm,

1 Set net.trainFcn to 'traingdm'. This sets net.trainParam to traingdm's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with traingdm.

See help feedforwardnet and help cascadeforwardnet for examples.

Definitions

Gradient Descent with Momentum

In addition to traingd, there are three other variations of gradient descent.
Gradient descent with momentum, implemented by traingdm, allows a network to respond not only to the local gradient, but also to recent trends in the error surface. Acting like a lowpass filter, momentum allows the network to ignore small features in the error surface. Without momentum a network can get stuck in a shallow local minimum. With momentum a network can slide through such a minimum. See page $12-9$ of [HDB96] for a discussion of momentum.

Gradient descent with momentum depends on two training parameters. The parameter lr indicates the learning rate, similar to the simple gradient descent. The parameter mc is the momentum constant that defines the amount of momentum. mc is set between 0 (no momentum) and values close to 1 (lots of momentum). A momentum constant of 1 results in a network that is completely insensitive to the local gradient and, therefore, does not learn properly.)

```
p=[[-1 -1 2 2; 0 5 0 5}]
t = [llllll
net = feedforwardnet(3,'traingdm');
net.trainParam.lr = 0.05;
```

```
net.trainParam.mc = 0.9;
net = train(net,p,t);
y = net(p)
```

Try the Neural Network Design demonstration nnd12mo [HDB96] for an illustration of the performance of the batch momentum algorithm.

Algorithms

traingdm can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to gradient descent with momentum,

```
dX = mc*dXprev + lr*(1-mc)*dperf/dX
```

where dXprev is the previous change to the weight or bias.
Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

See Also

traingd | traingda | traingdx | trainlm

Introduced before R2006a

traingdx

Gradient descent with momentum and adaptive learning rate backpropagation

Syntax

```
net.trainFcn = 'traingdx'
[net,tr] = train(net,...)
```


Description

traingdx is a network training function that updates weight and bias values according to gradient descent momentum and an adaptive learning rate.
net.trainFcn = 'traingdx' sets the network trainFcn property.
[net, tr] $=$ train(net, ...) trains the network with traingdx.
Training occurs according to traingdx training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.lr	0.01	Learning rate
net.trainParam.lr_inc	1.05	Ratio to increase learning rate
net.trainParam.lr_dec	0.7	Ratio to decrease learning rate
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.max_perf_inc	1.04	Maximum performance increase
net.trainParam.mc	0.9	Momentum constant
net.trainParam.min_grad	$1 \mathrm{e}-5$	Minimum performance gradient
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output

net.trainParam.showWindow	true	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses traingdx with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with traingdx,

1 Set net.trainFcn to 'traingdx'. This sets net.trainParam to traingdx's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with traingdx.

See help feedforwardnet and help cascadeforwardnet for examples.

Algorithms

The function traingdx combines adaptive learning rate with momentum training. It is invoked in the same way as traingda, except that it has the momentum coefficient mc as an additional training parameter.
traingdx can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to gradient descent with momentum,

```
dX = mc*dXprev + lr*mc*dperf/dX
```

where dXprev is the previous change to the weight or bias.
For each epoch, if performance decreases toward the goal, then the learning rate is increased by the factor lr_inc. If performance increases by more than the factor max_perf_inc, the learning rate is adjusted by the factor lr_dec and the change that increased the performance is not made.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

See Also

traingd | traingda | traingdm | trainlm

Introduced before R2006a

trainlm

Levenberg-Marquardt backpropagation

Syntax

```
net.trainFcn = 'trainlm'
[net,tr] = train(net,...)
```


Description

trainlm is a network training function that updates weight and bias values according to Levenberg-Marquardt optimization.
trainlm is often the fastest backpropagation algorithm in the toolbox, and is highly recommended as a first-choice supervised algorithm, although it does require more memory than other algorithms.
net.trainFcn = 'trainlm' sets the network trainFen property.
[net, tr] $=$ train(net,...) trains the network with trainlm.
Training occurs according to trainlm training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.min_grad	$1 \mathrm{e}-7$	Minimum performance gradient
net.trainParam.mu	0.001	Initial mu
net.trainParam.mu_dec	0.1	mu decrease factor
net.trainParam.mu_inc	10	mu increase factor
net.trainParam.mu_max	$1 e 10$	Maximum mu

net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam. showCommandLine	false	Generate command-line output
net.trainParam. showWindow	true	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Validation vectors are used to stop training early if the network performance on the validation vectors fails to improve or remains the same for max_fail epochs in a row. Test vectors are used as a further check that the network is generalizing well, but do not have any effect on training.
trainlm is the default training function for several network creation functions including newcf, newdtdnn, newff, and newnarx.

Network Use

You can create a standard network that uses trainlm with feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with trainlm,
1 Set net.trainFcn to 'trainlm'. This sets net.trainParam to trainlm's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with trainlm.

See help feedforwardnet and help cascadeforwardnet for examples.

Examples

Train Neural Network Using trainlm Train Function

This example shows how to train a neural network using the trainlm train function.

Here a neural network is trained to predict body fat percentages.

```
[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'trainlm');
net = train(net, x, t);
y = net(x);
```


Limitations

This function uses the Jacobian for calculations, which assumes that performance is a mean or sum of squared errors. Therefore, networks trained with this function must use either the mse or sse performance function.

Definitions

Levenberg-Marquardt Algorithm

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to approach second-order training speed without having to compute the Hessian matrix. When the performance function has the form of a sum of squares (as is typical in training feedforward networks), then the Hessian matrix can be approximated as
$\mathbf{H}=\mathbf{J}^{T} \mathbf{J}$
and the gradient can be computed as
$\mathbf{g}=\mathbf{J}^{T} \mathbf{e}$
where \mathbf{J} is the Jacobian matrix that contains first derivatives of the network errors with respect to the weights and biases, and \mathbf{e} is a vector of network errors. The Jacobian matrix can be computed through a standard backpropagation technique (see [HaMe94]) that is much less complex than computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the following Newton-like update:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\left[\mathbf{J}^{T} \mathbf{J}+\mu \mathbf{I}\right]^{-1} \mathbf{J}^{T} \mathbf{e}
$$

When the scalar μ is zero, this is just Newton's method, using the approximate Hessian matrix. When μ is large, this becomes gradient descent with a small step size. Newton's
method is faster and more accurate near an error minimum, so the aim is to shift toward Newton's method as quickly as possible. Thus, μ is decreased after each successful step (reduction in performance function) and is increased only when a tentative step would increase the performance function. In this way, the performance function is always reduced at each iteration of the algorithm.

The original description of the Levenberg-Marquardt algorithm is given in [Marq63]. The application of Levenberg-Marquardt to neural network training is described in [HaMe94] and starting on page 12-19 of [HDB96]. This algorithm appears to be the fastest method for training moderate-sized feedforward neural networks (up to several hundred weights). It also has an efficient implementation in MATLAB ${ }^{\circledR}$ software, because the solution of the matrix equation is a built-in function, so its attributes become even more pronounced in a MATLAB environment.

Try the Neural Network Design demonstration nnd12m [HDB96] for an illustration of the performance of the batch Levenberg-Marquardt algorithm.

Algorithms

trainlm supports training with validation and test vectors if the network's NET. divideFen property is set to a data division function. Validation vectors are used to stop training early if the network performance on the validation vectors fails to improve or remains the same for max_fail epochs in a row. Test vectors are used as a further check that the network is generalizing well, but do not have any effect on training.
trainlm can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate the Jacobian jX of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to LevenbergMarquardt,

```
jj = jx * jx
je = jx * E
dX = -(jj+I*mu) \ je
```

where E is all errors and I is the identity matrix.

The adaptive value mu is increased by mu_inc until the change above results in a reduced performance value. The change is then made to the network and mu is decreased by mu_dec.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- mu exceeds mu_max.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

Introduced before R2006a

trainoss

One-step secant backpropagation

Syntax

```
net.trainFcn = 'trainoss'
[net,tr] = train(net,...)
```


Description

trainoss is a network training function that updates weight and bias values according to the one-step secant method.
net.trainFcn = 'trainoss' sets the network trainFen property.
[net,tr] = train(net,...) trains the network with trainoss.
Training occurs according to trainoss training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.min_grad	$1 \mathrm{e}-10$	Minimum performance gradient
net.trainParam.searchFcn	'srchba c'	Name of line search routine to use
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol	20	Divide into delta to determine tolerance for linear search.
net.trainParam.alpha	0.001	Scale factor that determines sufficient reduction in perf
net.trainParam.beta	0.1	Scale factor that determines sufficiently large step size
net.trainParam.delta	0.01	Initial step size in interval location step
net.trainParam.gama	0.1	Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)
net.trainParam.low_lim	0.1	Lower limit on change in step size
net.trainParam.up_lim	0.5	Upper limit on change in step size
net.trainParam.maxstep	100	Maximum step length
net.trainParam.minstep	$1.0 e-6$	Minimum step length
net.trainParam.bmax	26	Maximum step size

Network Use

You can create a standard network that uses trainoss with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with trainoss:

1 Set net.trainFen to 'trainoss'. This sets net.trainParam to trainoss's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with trainoss.

Examples

Train Neural Network Using trainoss Train Function

This example shows how to train a neural network using the trainoss train function.

Here a neural network is trained to predict body fat percentages.

```
[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'trainoss');
net = train(net, x, t);
y = net(x);
```


Definitions

One Step Secant Method

Because the BFGS algorithm requires more storage and computation in each iteration than the conjugate gradient algorithms, there is need for a secant approximation with smaller storage and computation requirements. The one step secant (OSS) method is an attempt to bridge the gap between the conjugate gradient algorithms and the quasiNewton (secant) algorithms. This algorithm does not store the complete Hessian matrix; it assumes that at each iteration, the previous Hessian was the identity matrix. This has the additional advantage that the new search direction can be calculated without computing a matrix inverse.

The one step secant method is described in [Batt92]. This algorithm requires less storage and computation per epoch than the BFGS algorithm. It requires slightly more storage and computation per epoch than the conjugate gradient algorithms. It can be considered a compromise between full quasi-Newton algorithms and conjugate gradient algorithms.

Algorithms

trainoss can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:
$X=X+a * d X ;$
where $d X$ is the search direction. The parameter a is selected to minimize the performance along the search direction. The line search function searchFcn is used to
locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed from the new gradient and the previous steps and gradients, according to the following formula:

```
dX = -gX + Ac*X step + Bc*dgX;
```

where gX is the gradient, X _step is the change in the weights on the previous iteration, and dg X is the change in the gradient from the last iteration. See Battiti (Neural Computation, Vol. 4, 1992, pp. 141-166) for a more detailed discussion of the one-step secant algorithm.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

References

Battiti, R., "First and second order methods for learning: Between steepest descent and Newton's method," Neural Computation, Vol. 4, No. 2, 1992, pp. 141-166

See Also

```
trainbfg| traincgb | traincgf| traincgp | traingda| traingdm | traingdx
| trainlm | trainrp | trainscg
```


Introduced before R2006a

trainr

Random order incremental training with learning functions

Syntax

```
net.trainFcn = 'trainr'
[net,tr] = train(net,...)
```


Description

trainr is not called directly. Instead it is called by train for networks whose net.trainFen property is set to 'trainr', thus:
net.trainFcn = 'trainr' sets the network trainFcn property.
[net, tr] = train(net,...) trains the network with trainr.
trainr trains a network with weight and bias learning rules with incremental updates after each presentation of an input. Inputs are presented in random order.

Training occurs according to trainr training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses trainr by calling competlayer or selforgmap. To prepare a custom network to be trained with trainr,

1 Set net.trainFcn to 'trainr'. This sets net.trainParam to trainr's default parameters.

2 Set each net.inputWeights\{i,j\}.learnFcn to a learning function.
3 Set each net.layerWeights $\{i, j\}$.learnFcn to a learning function.
4 Set each net.biases \{i\}.learnFcn to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network,
1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Calltrain.
See help competlayer and help selforgmap for training examples.

Algorithms

For each epoch, all training vectors (or sequences) are each presented once in a different random order, with the network and weight and bias values updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

- The maximum number of epochs (repetitions) is reached.
- Performance is minimized to the goal.
- The maximum amount of time is exceeded.

See Also

train

Introduced before R2006a

trainrp

Resilient backpropagation

Syntax

```
net.trainFcn = 'trainrp'
[net,tr] = train(net,...)
```


Description

trainrp is a network training function that updates weight and bias values according to the resilient backpropagation algorithm (Rprop).
net.trainFcn $=$ 'trainrp' sets the network trainFcn property.
[net, tr] $=$ train(net, ...) trains the network with trainrp.
Training occurs according to trainrp training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI
net.trainParam.goal	0	Performance goal
net.trainParam.time	inf	Maximum time to train in seconds
net.trainParam.min_grad	$1 e-5$	Minimum performance gradient
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.lr	0.01	Learning rate
net.trainParam.delt_inc	1.2	Increment to weight change
net.trainParam.delt_dec	0.5	Decrement to weight change

net.trainParam.delta0	0.07	Initial weight change
net.trainParam.deltamax	50.0	Maximum weight change

Network Use

You can create a standard network that uses trainrp with feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with trainrp,
1 Set net.trainFcn to 'trainrp'. This sets net.trainParam to trainrp's default parameters.
2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainrp.

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

```
p = [llllllll}
t = [lllllll}
```

A two-layer feed-forward network with two hidden neurons and this training function is created.

Create and test a network.

```
net = feedforwardnet(2,'trainrp');
```

Here the network is trained and retested.

```
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = net(p)
```

See help feedforwardnet and help cascadeforwardnet for other examples.

Definitions

Resilient Backpropagation

Multilayer networks typically use sigmoid transfer functions in the hidden layers. These functions are often called "squashing" functions, because they compress an infinite input range into a finite output range. Sigmoid functions are characterized by the fact that their slopes must approach zero as the input gets large. This causes a problem when you use steepest descent to train a multilayer network with sigmoid functions, because the gradient can have a very small magnitude and, therefore, cause small changes in the weights and biases, even though the weights and biases are far from their optimal values.

The purpose of the resilient backpropagation (Rprop) training algorithm is to eliminate these harmful effects of the magnitudes of the partial derivatives. Only the sign of the derivative can determine the direction of the weight update; the magnitude of the derivative has no effect on the weight update. The size of the weight change is determined by a separate update value. The update value for each weight and bias is increased by a factor delt_inc whenever the derivative of the performance function with respect to that weight has the same sign for two successive iterations. The update value is decreased by a factor delt_dec whenever the derivative with respect to that weight changes sign from the previous iteration. If the derivative is zero, the update value remains the same. Whenever the weights are oscillating, the weight change is reduced. If the weight continues to change in the same direction for several iterations, the magnitude of the weight change increases. A complete description of the Rprop algorithm is given in [RiBr93].

The following code recreates the previous network and trains it using the Rprop algorithm. The training parameters for trainrp are epochs, show, goal, time, min_grad, max_fail, delt_inc, delt_dec, delta0, and deltamax. The first eight parameters have been previously discussed. The last two are the initial step size and the maximum step size, respectively. The performance of Rprop is not very sensitive to the settings of the training parameters. For the example below, the training parameters are left at the default values:

```
p = [llllllll
t = [l-1 -1 1 1];
```

```
net = feedforwardnet(3,'trainrp');
net = train(net,p,t);
y = net(p)
```

rprop is generally much faster than the standard steepest descent algorithm. It also has the nice property that it requires only a modest increase in memory requirements. You do need to store the update values for each weight and bias, which is equivalent to storage of the gradient.

Algorithms

trainrp can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:

```
dX = deltaX.*sign(gX);
```

where the elements of deltaX are all initialized to delta0, and $g X$ is the gradient. At each iteration the elements of deltaX are modified. If an element of $g X$ changes sign from one iteration to the next, then the corresponding element of deltaX is decreased by delta_dec. If an element of $g X$ maintains the same sign from one iteration to the next, then the corresponding element of deltaX is increased by delta_inc. See Riedmiller, M., and H. Braun, "A direct adaptive method for faster backpropagation learning: The RPROP algorithm," Proceedings of the IEEE International Conference on Neural Networks,1993, pp. 586-591.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

References

Riedmiller, M., and H. Braun, "A direct adaptive method for faster backpropagation learning: The RPROP algorithm," Proceedings of the IEEE International Conference on Neural Networks,1993, pp. 586-591.

See Also

trainbfg | traincgb | traincgf | traincgp | traingda | traingdm | traingdx | trainlm| trainoss | trainscg

Introduced before R2006a

trainru

Unsupervised random order weight/bias training

Syntax

```
net.trainFcn = 'trainru'
[net,tr] = train(net,...)
```


Description

trainru is not called directly. Instead it is called by train for networks whose net.trainFcn property is set to 'trainru', thus:
net.trainFcn = 'trainru' sets the network trainFen property.
[net,tr] $=\operatorname{train}(n e t, . .$.$) trains the network with trainru.$
trainru trains a network with weight and bias learning rules with incremental updates after each presentation of an input. Inputs are presented in random order.

Training occurs according to trainru training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI
net.trainParam.time	Inf	Maximum time to train in seconds

Network Use

To prepare a custom network to be trained with trainru,

1 Set net.trainFcn to 'trainru'. This sets net.trainParam to trainru's default parameters.
2 Set each net.inputWeights $\{i, j\}$.learnFen to a learning function.
3 Set each net. layerWeights $\{i, j\}$. learnFcn to a learning function.
4 Set each net.biases\{i\}.learnFcn to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network,
1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Calltrain.

Algorithms

For each epoch, all training vectors (or sequences) are each presented once in a different random order, with the network and weight and bias values updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.

See Also

train | trainr

Introduced in R2010b

trains

Sequential order incremental training with learning functions

Syntax

```
net.trainFcn = 'trains'
[net,tr] = train(net,...)
```


Description

trains is not called directly. Instead it is called by train for networks whose net.trainFen property is set to 'trains', thus:
net.trainFcn = 'trains' sets the network trainFcn property.
[net,tr] = train(net,...) trains the network with trains.
trains trains a network with weight and bias learning rules with sequential updates. The sequence of inputs is presented to the network with updates occurring after each time step.

This incremental training algorithm is commonly used for adaptive applications.
Training occurs according to trains training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI
net.trainParam.time	Inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses trains for adapting by calling perceptron or linearlayer.

To prepare a custom network to adapt with trains,
1 Set net.adaptFen to 'trains'. This sets net.adaptParam to trains's default parameters.
2 Set each net.inputWeights $\{i, j\}$.learnFcn to a learning function. Set each net.layerWeights\{i,j\}.learnFcn to a learning function. Set each net.biases \{i\}.learnFcn to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To allow the network to adapt,
1 Set weight and bias learning parameters to desired values.
2 Call adapt.
See help perceptron and help linearlayer for adaption examples.

Algorithms

Each weight and bias is updated according to its learning function after each time step in the input sequence.

See Also

train | trainb | trainc | trainr

Introduced before R2006a

trainscg

Scaled conjugate gradient backpropagation

Syntax

```
net.trainFcn = 'trainscg'
[net,tr] = train(net,...)
```


Description

trainscg is a network training function that updates weight and bias values according to the scaled conjugate gradient method.
net.trainFcn = 'trainscg' sets the network trainFcn property.
[net,tr] $=$ train(net,...) trains the network with trainscg.
Training occurs according to trainscg training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI
net.trainParam.goal	0	Performance goal
net.trainParam.time	inf	Maximum time to train in seconds
net.trainParam.min_grad	$1 \mathrm{e}-6$	Minimum performance gradient
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.sigma	$5.0 \mathrm{e}-5$	Determine change in weight for second derivative approximation
net.trainParam.lambda	$5.0 \mathrm{e}-7$	Parameter for regulating the indefiniteness of the Hessian

Network Use

You can create a standard network that uses trainscg with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with trainscg,

1 Set net.trainFen to 'trainscg'. This sets net.trainParam to trainscg's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with trainscg.

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

```
p=[[lllllll}
t = [llllllll
```

A two-layer feed-forward network with two hidden neurons and this training function is created.

```
net = feedforwardnet(2,'trainscg');
```

Here the network is trained and retested.

```
net = train(net,p,t);
a = net(p)
```

See help feedforwardnet and help cascadeforwardnet for other examples.

Algorithms

trainscg can train any network as long as its weight, net input, and transfer functions have derivative functions. Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X.

The scaled conjugate gradient algorithm is based on conjugate directions, as in traincgp, traincgf, and traincgb, but this algorithm does not perform a line search
at each iteration. See Moller (Neural Networks, Vol. 6, 1993, pp. 525-533) for a more detailed discussion of the scaled conjugate gradient algorithm.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

References

Moller, Neural Networks, Vol. 6, 1993, pp. 525-533

See Also

trainbfg | traincgb | traincgf | traincgp | traingda| traingdm | traingdx | trainlm | trainoss | trainrp

Introduced before R2006a

tribas

Triangular basis transfer function

Graph and Symbol

A
$a=$ tribas(n)
Triangular Basis Function

Syntax

$\mathrm{A}=\operatorname{tribas}(\mathrm{N}, \mathrm{FP})$

Description

tribas is a neural transfer function. Transfer functions calculate a layer's output from its net input.
$A=\operatorname{tribas}(N, F P)$ takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the triangular basis function applied to each element of N .
info = tribas('code') can take the following forms to return specific information:
tribas('name') returns the name of this function.
tribas('output',FP) returns the [min max] output range.
tribas('active', FP) returns the [min max] active input range.
tribas ('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S -by-Q.
tribas ('fpnames') returns the names of the function parameters.
tribas('fpdefaults') returns the default function parameters.

Examples

Here you create a plot of the tribas transfer function.

```
n = -5:0.1:5;
a = tribas(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'tribas';
```


Algorithms

$\mathrm{a}=$ tribas(n) $=1$ - abs(n), if $-1<=\mathrm{n}<=1$
= 0, otherwise

See Also

radbas | sim

Introduced before R2006a

tritop

Triangle layer topology function

Syntax

```
pos = tritop(dimensions)
```


Description

tritop calculates neuron positions for layers whose neurons are arranged in an Ndimensional triangular grid.
pos = tritop(dimensions) takes one argument:
dimensions \quad Row vector of dimension sizes
and returns an N -by- S matrix of N coordinate vectors, where N is the number of dimensions and S is the product of dimensions.

Examples

Display Layer with Triangular Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in an 8-by-5 triangular grid.

```
pos = tritop([8 5]);
plotsom(pos)
```


See Also

gridtop | hextop | randtop
Introduced in R2010b

unconfigure

Unconfigure network inputs and outputs

Syntax

```
unconfigure(net)
unconfigure(net, 'inputs', i)
unconfigure(net, 'outputs', i)
```


Description

unconfigure (net) returns a network with its input and output sizes set to 0 , its input and output processing settings and related weight initialization settings set to values consistent with zero-sized signals. The new network will be ready to be reconfigured for data of the same or different dimensions than it was previously configured for.
unconfigure(net, 'inputs', i) unconfigures the inputs indicated by the indices i. If no indices are specified, all inputs are unconfigured.
unconfigure (net, 'outputs', i) unconfigures the outputs indicated by the indices i. If no indices are specified, all outputs are unconfigured.

Examples

Here a network is configured for a simple fitting problem, and then unconfigured.

```
[x,t] = simplefit_dataset;
net = fitnet(10);
view(net)
net = configure(net,x,t);
view(net)
net = unconfigure(net)
view(net)
```

See Also
configure | isconfigured
Introduced in R2010b

vec2ind

Convert vectors to indices

Syntax

```
[ind,n] = vec2ind
```


Description

ind2vec and vec2ind (vec) allow indices to be represented either by themselves or as vectors containing a 1 in the row of the index they represent.
[ind, n$]=\mathrm{vec} 2$ ind takes one argument,

vec	Matrix of vectors, each containing a single 1

and returns

ind	The indices of the 1 s
n	The number of rows in vec

Examples

Here three vectors are converted to indices and back, while preserving the number of rows.

```
vec = [0 0 1 0; 1 0 0 0; 0 1 0 0]'
vec =
\begin{tabular}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{tabular}
[ind,n] = vec2ind(vec)
```

```
ind =
    3 1 2
n =
    4
vec2 = full(ind2vec(ind,n))
vec2 =
\begin{tabular}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{tabular}
```


See Also

ind2sub | ind2vec | sub2ind

Introduced before R2006a

view

View neural network

Syntax

view (net)

Description

view (net) opens a window that shows your neural network (specified in net) as a graphical diagram.

Example

View Neural Network

This example shows how to view the diagram of a pattern recognition network.

```
[x,t] = iris_dataset;
net = patternnet;
net = configure(net,x,t);
view(net)
```


Introduced in R2008a

Neural Net Fitting

Fit data by training a two-layer feed-forward network

Description

The Neural Net Fitting app leads you through solving a data-fitting problem using a two-layer feed-forward network. It helps you select data, divide it into training, validation, and testing sets, define the network architecture, and train the network. You can select your own data from the MATLAB workspace or use one of the example datasets. After training the network, evaluate its performance using mean squared error and regression analysis. Further analyze the results using visualization tools such as a regression fit or histogram of the errors. You can then evaluate the performance of the network on a test set. If you are not satisfied with the results, you can retrain the network with modified settings or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training process. You can also save the trained network to test on new data or use for solving similar fitting problems. The app also provides the option to generate various deployable versions of your trained network. For example, you can deploy the trained network using MATLAB Compiler, MATLAB Coder, or Simulink Coder tools.

Required Products

- MATLAB
- Neural Network Toolbox

Open the Neural Net Fitting App

- MATLAB Toolstrip: On the Apps tab, under Math, Statistics and Optimization, click the app icon.
- MATLAB command prompt: Enter nftool.

Examples

- "Fit Data with a Shallow Neural Network"

See Also

Apps

Neural Net Time Series | Neural Net Clustering | Neural Net Pattern Recognition

Functions

feedforwardnet | fitnet | trainbr | trainlm | trainscg

Topics

"Fit Data with a Shallow Neural Network"

Neural Net Clustering

Cluster data by training a self-organizing maps network

Description

The Neural Net Clustering app leads you through solving a clustering problem using a self-organizing map (SOM). It helps you select data, define the network architecture, and train the network. You can select your own data from the MATLAB workspace or use one of the example datasets. After training the network, analyze the results using various visualization tools. You can then evaluate the performance of the network on a test set. If you are not satisfied with the results, you can retrain the network with modified settings or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training process. You can also save the trained network to test on new data or use for solving similar clustering problems. The app also provides the option to generate various deployable versions of your trained network. For example, you can deploy the trained network using MATLAB Compiler, MATLAB Coder, or Simulink Coder tools.

Required Products

- MATLAB
- Neural Network Toolbox

Open the Neural Net Clustering App

- MATLAB Toolstrip: On the Apps tab, under Math, Statistics and Optimization, click the app icon.
- MATLAB command prompt: Enter nctool.

Examples

- "Cluster Data with a Self-Organizing Map"

See Also

Apps
Neural Net Fitting | Neural Net Pattern Recognition | Neural Net Time Series
\section*{Functions}
learnsomb | selforgmap | trainbu

Topics

"Cluster Data with a Self-Organizing Map"

Neural Net Pattern Recognition

Classify data by training a two-layer feed-forward network

Description

The Neural Net Pattern Recognition app leads you through solving a data classification problem using a two-layer feed-forward network. It helps you select data, divide it into training, validation, and testing sets, define the network architecture, and train the network. You can select your own data from the MATLAB workspace or use one of the example datasets. After training the network, evaluate its performance using cross-entropy and percent misclassification error. Further analyze the results using visualization tools such as confusion matrices and receiver operating characteristic curves. You can then evaluate the performance of the network on a test set. If you are not satisfied with the results, you can retrain the network with modified settings or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training process. You can also save the trained network to test on new data or use for solving similar classification problems. The app also provides the option to generate various deployable versions of your trained network. For example, you can deploy the trained network using MATLAB Compiler, MATLAB Coder, or Simulink Coder tools.

Required Products

- MATLAB
- Neural Network Toolbox

Open the Neural Net Pattern Recognition App

- MATLAB Toolstrip: On the Apps tab, under Math, Statistics and Optimization, click the app icon.
- MATLAB command prompt: Enter nprtool.

Examples

- "Classify Patterns with a Shallow Neural Network"

See Also

Apps
Neural Net Fitting | Neural Net Clustering | Neural Net Time Series
Functions
patternnet | trainlm

Topics

"Classify Patterns with a Shallow Neural Network"

Neural Net Time Series

Solve a nonlinear time series problem by training a dynamic neural network

Description

The Neural Net Time Series app leads you through solving three different kinds of nonlinear time series problems using a dynamic network. It helps you select data, divide it into training, validation, and testing sets, define the network architecture, and train the network. You can select your own data from the MATLAB workspace or use one of the example datasets. After training the network, evaluate its performance using mean squared error and regression analysis. Further analyze the results using visualization tools such as an error autocorrelation plot or histogram of the errors. You can then evaluate the performance of the network on a test set. If you are not satisfied with the results, retrain the network with modified settings or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training process. You can also save the trained network to test on new data or use for solving similar classification problems. The app also provides the option to generate various deployable versions of your trained network. For example, you can deploy the trained network using MATLAB Compiler, MATLAB Coder, or Simulink Coder tools.

Required Products

- MATLAB
- Neural Network Toolbox

Open the Neural Net Time Series App

- MATLAB Toolstrip: On the Apps tab, under Math, Statistics and Optimization, click the app icon.
- MATLAB command prompt: Enter ntstool.

Examples

- "Shallow Neural Network Time-Series Prediction and Modeling"

See Also

Apps
Neural Net Fitting | Neural Net Clustering | Neural Net Pattern Recognition
Functions
narnet | narxnet

Topics

"Shallow Neural Network Time-Series Prediction and Modeling"

Autoencoder class

Autoencoder class

Description

An Autoencoder object contains an autoencoder network, which consists of an encoder and a decoder. The encoder maps the input to a hidden representation. The decoder attempts to map this representation back to the original input.

Construction

autoenc $=$ trainAutoencoder (X) returns an autoencoder trained using the training data in X .
autoenc $=$ trainAutoencoder(X,hiddenSize) returns an autoencoder with the hidden representation size of hiddenSize.

```
autoenc = trainAutoencoder(
```

\qquad , Name, Value) for any of the above input arguments with additional options specified by one or more Name, Value pair arguments.

Input Arguments

x - Training data

matrix | cell array of image data
Training data, specified as a matrix of training samples or a cell array of image data. If X is a matrix, then each column contains a single sample. If x is a cell array of image data, then the data in each cell must have the same number of dimensions. The image data can be pixel intensity data for gray images, in which case, each cell contains an m-by- n matrix. Alternatively, the image data can be RGB data, in which case, each cell contains an m-by- n - 3 matrix.

Data Types: single | double | cell

hiddenSize - Size of hidden representation of the autoencoder 10 (default) | positive integer value

Size of hidden representation of the autoencoder, specified as a positive integer value. This number is the number of neurons in the hidden layer.

Data Types: single | double

Properties

HiddenSize - Size of the hidden representation

a positive integer value
Size of the hidden representation in the hidden layer of the autoencoder, stored as a positive integer value.

Data Types: double

EncoderTransferFunction - Name of the transfer function for the encoder string

Name of the transfer function for the encoder, stored as a string.

Data Types: char

EncoderWeights - Weights for the encoder
matrix
Weights for the encoder, stored as a matrix.
Data Types: double
EncoderBiases - Bias values for the encoder vector

Bias values for the encoder, stored as a vector.
Data Types: double
DecoderTransferFunction - Name of the transfer function for the decoder string

Name of the transfer function for the decoder, stored as a string.

Data Types: char

DecoderWeights - Weights for the decoder

matrix
Weights for the decoder, stored as a matrix.

Data Types: double

DecoderBiases - Bias values for the decoder

vector

Bias values for the decoder, stored as a vector.
Data Types: double

TrainingParameters - Parameters that trainAutoencoder uses for training the autoencoder

structure
Parameters that trainAutoencoder uses for training the autoencoder, stored as a structure.

Data Types: struct

ScaleData - Indicator for data that is rescaled

true or 1 (default) | false or 0
Indicator for data that is rescaled while passing to the autoencoder, stored as either true or false.

Autoencoders attempt to replicate their input at their output. For it to be possible, the range of the input data must match the range of the transfer function for the decoder. trainAutoencoder automatically scales the training data to this range when training an autoencoder. If the data was scaled while training an autoencoder, the predict, encode, and decode methods also scale the data.

Data Types: logical

Methods

decode	Decode encoded data
encode	Encode input data
generateFunction	Generate a MATLAB function to run the autoencoder
generateSimulink	Generate a Simulink model for the autoencoder
network	Convert Autoencoder object into network object
plotWeights	Plot a visualization of the weights for the encoder of an autoencoder
predict	Reconstruct the inputs using trained autoencoder
stack	Stack encoders from several autoencoders together
view	View autoencoder

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

See Also

trainAutoencoder

Topics

Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2015b

trainAutoencoder

Train an autoencoder

Syntax

```
autoenc = trainAutoencoder(X)
autoenc = trainAutoencoder(X,hiddenSize)
autoenc = trainAutoencoder(___,Name,Value)
```


Description

autoenc $=$ trainAutoencoder (X) returns an autoencoder, autoenc, trained using the training data in X .
autoenc $=$ trainAutoencoder(X,hiddenSize) returns an autoencoder autoenc, with the hidden representation size of hiddenSize.
autoenc $=$ trainAutoencoder (\qquad , Name, Value) returns an autoencoder autoenc, for any of the above input arguments with additional options specified by one or more Name, Value pair arguments.

For example, you can specify the sparsity proportion or the maximum number of training iterations.

Examples

Train Sparse Autoencoder

Load the sample data.
X = abalone_dataset;
X is an 8 -by- 4177 matrix defining eight attributes for 4177 different abalone shells: sex (M, F, and I (for infant)), length, diameter, height, whole weight, shucked weight, viscera
weight, shell weight. For more information on the dataset, type help abalone_dataset in the command line.

Train a sparse autoencoder with default settings.

```
autoenc = trainAutoencoder(X);
```

Reconstruct the abalone shell ring data using the trained autoencoder.

```
XReconstructed = predict(autoenc,X);
```

Compute the mean squared reconstruction error.

```
mseError = mse(X-XReconstructed)
mseError = 0.0167
```


Train Autoencoder with Specified Options

Load the sample data.

```
X = abalone_dataset;
```

X is an 8 -by- 4177 matrix defining eight attributes for 4177 different abalone shells: sex (M, F, and I (for infant)), length, diameter, height, whole weight, shucked weight, viscera weight, shell weight. For more information on the dataset, type help abalone_dataset in the command line.

Train a sparse autoencoder with hidden size 4, 400 maximum epochs, and linear transfer function for the decoder.

```
autoenc = trainAutoencoder(X,4,'MaxEpochs',400,...
'DecoderTransferFunction','purelin');
```

Reconstruct the abalone shell ring data using the trained autoencoder.

```
XReconstructed = predict(autoenc,X);
```

Compute the mean squared reconstruction error.

```
mseError = mse(X-XReconstructed)
```

```
mseError = 0.0045
```


Reconstruct Observations Using Sparse Autoencoder

Generate the training data.

```
rng(0,'twister'); % For reproducibility
n = 1000;
r = linspace(-10,10,n)';
x = 1 + r*5e-2 + sin(r)./r + 0.2*randn(n,1);
```

Train autoencoder using the training data.

```
hiddenSize = 25;
autoenc = trainAutoencoder(x',hiddenSize,...
    'EncoderTransferFunction','satlin',...
    'DecoderTransferFunction','purelin',...
    'L2WeightRegularization',0.01,...
    'SparsityRegularization',4,...
    'SparsityProportion',0.10);
```

Generate the test data.

```
n = 1000;
r = sort(-10 + 20*rand(n,1));
xtest = 1 +r*5e-2 + sin(r)./r + 0.4*randn(n,1);
```

Predict the test data using the trained autoencoder, autoenc .

```
xReconstructed = predict(autoenc,xtest');
```

Plot the actual test data and the predictions.

```
figure;
plot(xtest,'r.');
hold on
plot(xReconstructed,'go');
```


Reconstruct Handwritten Digit Images Using Sparse Autoencoder

Load the training data.

```
XTrain = digitTrainCellArrayData;
```

The training data is a 1-by- 5000 cell array, where each cell containing a 28 -by- 28 matrix representing a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

```
hiddenSize = 25;
autoenc = trainAutoencoder(XTrain,hiddenSize,...
    'L2WeightRegularization',0.004,...
    'SparsityRegularization',4,...
    'SparsityProportion',0.15);
```

Load the test data.

```
XTest = digitTestCellArrayData;
```

The test data is a 1-by- 5000 cell array, with each cell containing a 28 -by- 28 matrix representing a synthetic image of a handwritten digit.

Reconstruct the test image data using the trained autoencoder, autoenc.

```
xReconstructed = predict(autoenc,XTest);
```

View the actual test data.

```
figure;
for i = 1:20
    subplot(4,5,i);
    imshow(XTest{i});
end
```


View the reconstructed test data.

```
figure;
for i = 1:20
    subplot(4,5,i);
    imshow(xReconstructed{i});
end
```


- "Construct Deep Network Using Autoencoders"

Input Arguments

x - Training data

matrix | cell array of image data
Training data, specified as a matrix of training samples or a cell array of image data. If x is a matrix, then each column contains a single sample. If x is a cell array of image data, then the data in each cell must have the same number of dimensions. The image data can be pixel intensity data for gray images, in which case, each cell contains an m-by- n
matrix. Alternatively, the image data can be RGB data, in which case, each cell contains an m-by- n - 3 matrix.

```
Data Types: single | double | cell
```


hiddenSize - Size of hidden representation of the autoencoder

```
10 (default) | positive integer value
```

Size of hidden representation of the autoencoder, specified as a positive integer value. This number is the number of neurons in the hidden layer.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., Namen, Valuen.

Example: 'EncoderTransferFunction','satlin','L2WeightRegularization', 0.05 specifies the transfer function for the encoder as the positive saturating linear transfer function and the L2 weight regularization as 0.05.

EncoderTransferFunction - Transfer function for the encoder
'logsig' (default) | 'satlin'
Transfer function for the encoder, specified as the comma-separated pair consisting of 'EncoderTransferFunction' and one of the following.

Transfer Function Option	Definition
'logsig'	Logistic sigmoid function
	$f(z)=\frac{1}{1+e^{-z}}$

Transfer Function Option	Definition
'satlin'	Positive saturating linear transfer function
	$f(z)=\left\{\begin{array}{cc}0, & \text { if } z \leq 0 \\ z, & \text { if } 0<z<1 \\ 1, & \text { if } z \geq 1\end{array}\right.$

Example: 'EncoderTransferFunction','satlin'

DecoderTransferFunction - Transfer function for the decoder

'logsig' (default) | 'satlin' | 'purelin'
Transfer function for the decoder, specified as the comma-separated pair consisting of ' DecoderTransferFunction' and one of the following.

Transfer Function Option	Definition
'logsig'	Logistic sigmoid function
	$f(z)=\frac{1}{1+e^{-z}}$
'satlin'	Positive saturating linear transfer function
	$f(z)= \begin{cases}0, & \text { if } z \leq 0 \\ z, & \text { if } 0<z<1 \\ 1, & \text { if } z \geq 1\end{cases}$
'purelin'	Linear transfer function
	$f(z)=z$

Example: 'DecoderTransferFunction','purelin'

MaxEpochs - Maximum number of training epochs

1000 (default) | positive integer value
Maximum number of training epochs or iterations, specified as the comma-separated pair consisting of 'MaxEpochs' and a positive integer value.

Example: 'MaxEpochs',1200

L2WeightRegularization - The coefficient for the L_{2} weight regularizer

0.001 (default) | a positive scalar value

The coefficient for the L_{2} weight regularizer on page 1-599 in the cost function (LossFunction), specified as the comma-separated pair consisting of 'L2WeightRegularization' and a positive scalar value.

Example: 'L2WeightRegularization', 0.05

LossFunction - Loss function to use for training

'msesparse' (default)
Loss function to use for training, specified as the comma-separated pair consisting of 'LossFunction' and 'msesparse'. It corresponds to the mean squared error function adjusted for training a sparse autoencoder on page 1-598 as follows:

$$
E=\underbrace{\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K}\left(x_{k n}-\hat{x}_{k n}\right)^{2}}_{\text {mean squared error }}+\lambda^{*} \underbrace{\Omega_{\text {weights }}}_{\begin{array}{c}
L_{2} \\
\text { regularization }
\end{array}}+\beta^{*} \underbrace{\Omega_{\text {sparsity }}}_{\begin{array}{c}
\text { sparsity } \\
\text { regularization }
\end{array}},
$$

where λ is the coefficient for the L_{2} regularization term on page 1-599 and β is the coefficient for the sparsity regularization term on page 1-598. You can specify the values of λ and β by using the L2WeightRegularization and SparsityRegularization name-value pair arguments, respectively, while training an autoencoder.

ShowProgressWindow - Indicator to show the training window

true (default) | false
Indicator to show the training window, specified as the comma-separated pair consisting of 'ShowProgressWindow' and either true or false.

Example: 'ShowProgressWindow', false

SparsityProportion — Desired proportion of training examples a neuron reacts to

 0.05 (default) | positive scalar value in the range from 0 to 1Desired proportion of training examples a neuron reacts to, specified as the commaseparated pair consisting of 'SparsityProportion' and a positive scalar value. Sparsity proportion is a parameter of the sparsity regularizer. It controls the sparsity of
the output from the hidden layer. A low value for SparsityProportion usually leads to each neuron in the hidden layer "specializing" by only giving a high output for a small number of training examples. Hence, a low sparsity proportion encourages higher degree of sparsity. See Sparse Autoencoders on page 1-598.

Example: 'SparsityProportion', 0.01 is equivalent to saying that each neuron in the hidden layer should have an average output of 0.1 over the training examples.

SparsityRegularization — Coefficient that controls the impact of the sparsity regularizer

```
1 (default) | a positive scalar value
```

Coefficient that controls the impact of the sparsity regularizer on page 1-598 in the cost function, specified as the comma-separated pair consisting of 'SparsityRegularization' and a positive scalar value.

Example: 'SparsityRegularization',1.6

```
TrainingAlgorithm - The algorithm to use for training the autoencoder
'trainscg' (default)
```

The algorithm to use for training the autoencoder, specified as the comma-separated pair consisting of 'TrainingAlgorithm' and 'trainscg'. It stands for scaled conjugate gradient descent [1].

ScaleData - Indicator to rescale the input data
true (default) | false
Indicator to rescale the input data, specified as the comma-separated pair consisting of 'ScaleData' and either true or false.

Autoencoders attempt to replicate their input at their output. For it to be possible, the range of the input data must match the range of the transfer function for the decoder. trainAutoencoder automatically scales the training data to this range when training an autoencoder. If the data was scaled while training an autoencoder, the predict, encode, and decode methods also scale the data.

Example: 'ScaleData',false

UseGPU - Indicator to use GPU for training

false (default) | true

Indicator to use GPU for training, specified as the comma-separated pair consisting of 'UseGPU' and either true or false.

Example: 'UseGPU', true

Output Arguments

autoenc - Trained autoencoder

Autoencoder object
Trained autoencoder, returned as an Autoencoder object. For information on the properties and methods of this object, see Autoencoder class page.

Definitions

Autoencoders

An autoencoder is a neural network which is trained to replicate its input at its output. Autoencoders can be used as tools to learn deep neural networks. Training an autoencoder is unsupervised in the sense that no labeled data is needed. The training process is still based on the optimization of a cost function. The cost function measures the error between the input x and its reconstruction at the output \hat{x}.

An autoencoder is composed of an encoder and a decoder. The encoder and decoder can have multiple layers, but for simplicity consider that each of them has only one layer.

If the input to an autoencoder is a vector $\boldsymbol{x} \in \mathbb{R}^{D_{x}}$, then the encoder maps the vector x to another vector $\boldsymbol{z} \in \mathbb{R}^{D^{(1)}}$ as follows:

$$
\boldsymbol{z}^{(1)}=h^{(1)}\left(\boldsymbol{W}^{(1)} \boldsymbol{x}+\boldsymbol{b}^{(1)}\right),
$$

where the superscript (1) indicates the first layer. $h^{(1)}: \mathbb{R}^{D^{(1)}} \rightarrow \mathbb{R}^{D^{(1)}}$ is a transfer function for the encoder, $W^{(1)} \in \mathbb{R}^{D^{(1)} \times D_{x}}$ is a weight matrix, and $b^{(1)} \in \mathbb{R}^{D^{(1)}}$ is a bias vector. Then, the decoder maps the encoded representation z back into an estimate of the original input vector, x, as follows:
$\hat{\boldsymbol{x}}=h^{(2)}\left(\boldsymbol{W}^{(2)} \boldsymbol{x}+\boldsymbol{b}^{(2)}\right)$,
where the superscript (2) represents the second layer. $h^{(2)}: \mathbb{R}^{D_{x}} \rightarrow \mathbb{R}^{D_{x}}$ is the transfer function for the decoder, $W^{(1)} \in \mathbb{R}^{D_{x} \times D^{(1)}}$ is a weight matrix, and $b^{(2)} \in \mathbb{R}^{D_{x}}$ is a bias vector.

Sparse Autoencoders

Encouraging sparsity of an autoencoder is possible by adding a regularizer to the cost function [2]. This regularizer is a function of the average output activation value of a neuron. The average output activation measure of a neuron i is defined as:
$\hat{\rho}_{i}=\frac{1}{n} \sum_{j=1}^{n} z_{i}^{(1)}\left(x_{j}\right)=\frac{1}{n} \sum_{j=1}^{n} h\left(w_{i}^{(1) T} x_{j}+b_{i}^{(1)}\right)$,
where n is the total number of training examples. x_{j} is the j th training example, $w_{i}^{(1) T}$ is the i th row of the weight matrix $\boldsymbol{W}^{(1)}$, and $b_{i}^{(1)}$ is the i th entry of the bias vector, $\boldsymbol{b}^{(1)}$. A neuron is considered to be 'firing', if its output activation value is high. A low output activation value means that the neuron in the hidden layer fires in response to a small number of the training examples. Adding a term to the cost function that constrains the
values of $\hat{\rho}_{i}$ to be low encourages the autoencoder to learn a representation, where each neuron in the hidden layer fires to a small number of training examples. That is, each neuron specializes by responding to some feature that is only present in a small subset of the training examples.

Sparsity Regularization

Sparsity regularizer attempts to enforce a constraint on the sparsity of the output from the hidden layer. Sparsity can be encouraged by adding a regularization term that takes a large value when the average activation value, $\hat{\rho}_{i}$, of a neuron i and its desired value, ρ, are not close in value [2]. One such sparsity regularization term can be the KullbackLeibler divergence.
$\Omega_{\text {sparsity }}=\sum_{i=1}^{D^{(1)}} K L\left(\rho \| \hat{\rho}_{i}\right)=\sum_{i=1}^{D^{(1)}} \rho \log \left(\frac{\rho}{\hat{\rho}_{i}}\right)+(1-\rho) \log \left(\frac{1-\rho}{1-\hat{\rho}_{i}}\right)$
Kullback-Leibler divergence is a function for measuring how different two distributions are. In this case, it takes the value zero when ρ and $\hat{\rho}_{i}$ are equal to each other, and becomes larger as they diverge from each other. Minimizing the cost function forces this term to be small, hence ρ and $\hat{\rho}_{i}$ to be close to each other. You can define the desired value of the average activation value using the SparsityProportion name-value pair argument while training an autoencoder.

L_{2} Regularization

When training a sparse autoencoder, it is possible to make the sparsity regulariser small by increasing the values of the weights $w^{(1)}$ and decreasing the values of $z^{(1)}$ [2]. Adding a regularization term on the weights to the cost function prevents it from happening. This term is called the L_{2} regularization term and is defined by:
$\Omega_{\text {weights }}=\frac{1}{2} \sum_{l}^{L} \sum_{j}^{n} \sum_{i}^{k}\left(w_{j i}^{(l)}\right)^{2}$,
where L is the number of hidden layers, n is the number of observations (examples), and k is the number of variables in the training data.

Cost Function

The cost function for training a sparse autoencoder on page 1-598 is an adjusted mean squared error function as follows:

$$
E=\underbrace{\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K}\left(x_{k n}-\hat{x}_{k n}\right)^{2}}_{\text {mean squared error }}+\lambda * \underbrace{\Omega_{\text {weights }}}_{\begin{array}{c}
L_{2} \\
\text { regularization }
\end{array}}+\beta^{*} \underbrace{\Omega_{\text {sparsity }}}_{\begin{array}{c}
\text { sparsity } \\
\text { regularization }
\end{array}}
$$

where λ is the coefficient for the L_{2} regularization term on page $1-599$ and β is the coefficient for the sparsity regularization term on page $1-598$. You can specify the values of λ and β by using the L2WeightRegularization and SparsityRegularization name-value pair arguments, respectively, while training an autoencoder.

References

[1] Moller, M. F. "A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning", Neural Networks, Vol. 6, 1993, pp. 525-533.
[2] Olshausen, B. A. and D. J. Field. "Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1." Vision Research, Vol.37, 1997, pp.3311-3325.

See Also

Autoencoder | encode | stack | trainSoftmaxLayer

Topics

"Construct Deep Network Using Autoencoders"

Introduced in R2015b

trainSoftmaxLayer

Train a softmax layer for classification

Syntax

```
net = trainSoftmaxLayer(X,T)
net = trainSoftmaxLayer(X,T,Name,Value)
```


Description

net $=$ trainSoftmaxLayer (X, T) trains a softmax layer, net, on the input data X and the targets T .
net $=$ trainSoftmaxLayer (X, T, Name, Value) trains a softmax layer, net, with additional options specified by one or more of the Name, Value pair arguments.

For example, you can specify the loss function.

Examples

Classify Using Softmax Layer

Load the sample data.

```
[X,T] = iris_dataset;
```

x is a 4 x 150 matrix of four attributes of iris flowers: Sepal length, sepal width, petal length, petal width.
T is a 3×150 matrix of associated class vectors defining which of the three classes each input is assigned to. Each row corresponds to a dummy variable representing one of the iris species (classes). In each column, a 1 in one of the three rows represents the class that particular sample (observation or example) belongs to. There is a zero in the rows for the other classes that the observation does not belong to.

Train a softmax layer using the sample data.

```
net = trainSoftmaxLayer(X,T);
```

Classify the observations into one of the three classes using the trained softmax layer.

```
Y = net(X);
```

Plot the confusion matrix using the targets and the classifications obtained from the softmax layer.

```
plotconfusion(T,Y);
```


Input Arguments

x — Training data
m-by- n matrix

Training data, specified as an m-by- n matrix, where m is the number of variables in training data, and n is the number of observations (examples). Hence, each column of X represents a sample.

Data Types: single | double

T — Target data

k-by-n matrix
Target data, specified as a k-by- n matrix, where k is the number of classes, and n is the number of observations. Each row is a dummy variable representing a particular class. In other words, each column represents a sample, and all entries of a column are zero except for a single one in a row. This single entry indicates the class for that sample.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., Namen, Valuen.

Example: 'MaxEpochs', 400,'ShowProgressWindow',false specifies the maximum number of iterations as 400 and hides the training window.

MaxEpochs - Maximum number of training iterations

1000 (default) | positive integer value
Maximum number of training iterations, specified as the comma-separated pair consisting of 'MaxEpochs' and a positive integer value.

Example: 'MaxEpochs',500
Data Types: single | double

LossFunction - Loss function for the softmax layer

'crossentropy' (default) | 'mse'
Loss function for the softmax layer, specified as the comma-separated pair consisting of
'LossFunction' and either 'crossentropy' or 'mse'.
mse stands for mean squared error function, which is given by:
$E=\frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{k}\left(t_{i j}-y_{i j}\right)^{2}$,
where n is the number of training examples, and k is the number of classes. $t_{i j}$ is the $i j$ th entry of the target matrix, T , and $y_{i j}$ is the i th output from the autoencoder when the input vector is $\boldsymbol{x}_{\boldsymbol{j}}$.

The cross entropy function is given by:
$E=\frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{k} t_{i j} \ln y_{i j}+\left(1-t_{i j}\right) \ln \left(1-y_{i j}\right)$.
Example: 'LossFunction','mse'

ShowProgressWindow - Indicator to display the training window

true (default) | false
Indicator to display the training window during training, specified as the commaseparated pair consisting of 'ShowProgressWindow' and either true or false.
Example: 'ShowProgressWindow', false
Data Types: logical
TrainingAlgorithm — Training algorithm
'trainscg' (default)
Training algorithm used to train the softmax layer, specified as the comma-separated pair consisting of 'TrainingAlgorithm' and 'trainscg', which stands for scaled conjugate gradient.
Example: 'TrainingAlgorithm','trainscg'

Output Arguments

net - Softmax layer for classification
network object

Softmax layer for classification, returned as a network object. The softmax layer, net, is the same size as the target T.

See Also

stack | trainAutoencoder

Introduced in R2015b

decode

Class: Autoencoder
Decode encoded data

Syntax

```
Y = decode(autoenc,Z)
```


Description

Y = decode (autoenc, Z) returns the decoded data on page 1-609 Y, using the autoencoder autoenc.

Input Arguments

autoenc - Trained autoencoder

Autoencoder object
Trained autoencoder, returned by the trainAutoencoder function as an object of the Autoencoder class.

z - Data encoded by autoenc
 matrix

Data encoded by autoenc, specified as a matrix. Each column of Z represents an encoded sample (observation).

Data Types: single | double

Output Arguments

Y — Decoded data
matrix | cell array of image data

Decoded data, returned as a matrix or a cell array of image data.
If the autoencoder autoenc was trained on a cell array of image data, then Y is also a cell array of images.

If the autoencoder autoenc was trained on a matrix, then Y is also a matrix, where each column of Y corresponds to one sample or observation.

Examples

Decode Encoded Data For New Images

Load the training data.

X = digitTrainCellArrayData;
X is a 1-by- 5000 cell array, where each cell contains a 28 -by- 28 matrix representing a synthetic image of a handwritten digit.

Train an autoencoder using the training data with a hidden size of 15 .

```
hiddenSize = 15;
autoenc = trainAutoencoder(X,hiddenSize);
```

Extract the encoded data for new images using the autoencoder.

```
Xnew = digitTestCellArrayData;
features = encode(autoenc,Xnew);
```

Decode the encoded data from the autoencoder.

```
Y = decode(autoenc,features);
```

Y is a 1-by- 5000 cell array, where each cell contains a 28 -by- 28 matrix representing a synthetic image of a handwritten digit.

Algorithms

If the input to an autoencoder is a vector $\boldsymbol{x} \in \mathbb{R}^{D_{x}}$, then the encoder maps the vector x to another vector $\boldsymbol{z} \in \mathbb{R}^{D^{(1)}}$ as follows:
$\boldsymbol{z}^{(1)}=h^{(1)}\left(\boldsymbol{W}^{(1)} \boldsymbol{x}+\boldsymbol{b}^{(1)}\right)$,
where the superscript (1) indicates the first layer. $h^{(1)}: \mathbb{R}^{D^{(1)}} \rightarrow \mathbb{R}^{D^{(1)}}$ is a transfer function for the encoder, $W^{(1)} \in \mathbb{R}^{D^{(1)} \times D_{x}}$ is a weight matrix, and $b^{(1)} \in \mathbb{R}^{D^{(1)}}$ is a bias vector. Then, the decoder maps the encoded representation z back into an estimate of the original input vector, x, as follows:

$$
\hat{\boldsymbol{x}}=h^{(2)}\left(\boldsymbol{W}^{(2)} \boldsymbol{x}+\boldsymbol{b}^{(2)}\right),
$$

where the superscript (2) represents the second layer. $h^{(2)}: \mathbb{R}^{D_{x}} \rightarrow \mathbb{R}^{D_{x}}$ is the transfer function for the decoder, $W^{(1)} \in \mathbb{R}^{D_{x} \times D^{(1)}}$ is a weight matrix, and $b^{(2)} \in \mathbb{R}^{D_{x}}$ is a bias vector.

See Also

encode | trainAutoencoder

Introduced in R2015b

encode

Class: Autoencoder
Encode input data

Syntax

```
Z = encode(autoenc,Xnew)
```


Description

$Z=$ encode (autoenc, Xnew) returns the encoded data on page 1-611, Z, for the input data Xnew, using the autoencoder, autoenc.

Input Arguments

autoenc - Trained autoencoder

Autoencoder object
Trained autoencoder, returned as an object of the Autoencoder class.

```
Xnew - Input data
matrix | cell array of image data | array of single image data
```

Input data, specified as a matrix of samples, a cell array of image data, or an array of single image data.

If the autoencoder autoenc was trained on a matrix, where each column represents a single sample, then Xnew must be a matrix, where each column represents a single sample.

If the autoencoder autoenc was trained on a cell array of images, then Xnew must either be a cell array of image data or an array of single image data.

Data Types: single | double | cell

Output Arguments

z - Data encoded by autoenc
 matrix

Data encoded by autoenc, specified as a matrix. Each column of z represents an encoded sample (observation).

Data Types: single | double

Examples

Encode Decoded Data for New Images

Load the sample data.
X = digitTrainCellArrayData;
x is a 1-by- 5000 cell array, where each cell contains a 28 -by- 28 matrix representing a synthetic image of a handwritten digit.

Train an autoencoder with a hidden size of 50 using the training data.

```
autoenc = trainAutoencoder(X,50);
```

Encode decoded data for new image data.

```
Xnew = digitTestCellArrayData;
```

Z = encode (autoenc,Xnew);

Xnew is a 1-by- 5000 cell array. z is a 50 -by- 5000 matrix, where each column represents the image data of one handwritten digit in the new data Xnew.

Algorithms

If the input to an autoencoder is a vector $\boldsymbol{x} \in \mathbb{R}^{D_{x}}$, then the encoder maps the vector x to another vector $\boldsymbol{z} \in \mathbb{R}^{D^{(1)}}$ as follows:
$\boldsymbol{z}^{(1)}=h^{(1)}\left(\boldsymbol{W}^{(1)} \boldsymbol{x}+\boldsymbol{b}^{(1)}\right)$,
where the superscript (1) indicates the first layer. $h^{(1)}: \mathbb{R}^{D^{(1)}} \rightarrow \mathbb{R}^{D^{(1)}}$ is a transfer function for the encoder, $W^{(1)} \in \mathbb{R}^{D^{(1)} \times D_{x}}$ is a weight matrix, and $b^{(1)} \in \mathbb{R}^{D^{(1)}}$ is a bias vector.

See Also

decode | stack | trainAutoencoder

Introduced in R2015b

generateFunction

Class: Autoencoder

Generate a MATLAB function to run the autoencoder

```
Syntax
generateFunction(autoenc)
generateFunction(autoenc,pathname)
generateFunction(autoenc, pathname,Name,Value)
```


Description

generateFunction(autoenc) generates a complete stand-alone function in the current directory, to run the autoencoder autoenc on input data.
generateFunction (autoenc, pathname) generates a complete stand-alone function to run the autoencoder autoenc on input data in the location specified by pathname.
generateFunction (autoenc, pathname, Name, Value) generates a complete standalone function with additional options specified by the Name, Value pair argument.

Input Arguments

autoenc - Trained autoencoder
Autoencoder object
Trained autoencoder, returned as an object of the Autoencoder class.
pathname - Location for generated function
string
Location for generated function, specified as a string.
Example: 'C: \MyDocuments \Autoencoders'

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1, ...,NameN, ValueN.

ShowLinks - Indicator to display the links to the generated code

false (default) | true
Indicator to display the links to the generated code in the command window, specified as the comma-separated pair consisting of 'ShowLinks' and either true or false.

Example: 'ShowLinks',true
Data Types: logical

Examples

Generate MATLAB Function for Running Autoencoder

Load the sample data.

```
X = iris_dataset;
```

Train an autoencoder with 4 neurons in the hidden layer.

```
autoenc = trainAutoencoder(X,4);
```

Generate the code for running the autoencoder. Show the links to the MATLAB function.

```
generateFunction(autoenc)
MATLAB function generated: neural function.m
To view generated function code: edit neural function
For examples of using function: help neural function
```

Generate the code for the autoencoder in a specific path.

```
generateFunction(autoenc,'H:\Documents\Autoencoder')
MATLAB function generated: H:\Documents\Autoencoder.m
To view generated function code: edit Autoencoder
For examples of using function: help Autoencoder
```


Tips

- If you do not specify the path and the file name, generateFunction, by default, creates the code in an m-file with the name neural_function.m. You can change the file name after generateFunction generates it. Or you can specify the path and file name using the pathname input argument in the call to generateFunction.

See Also

genFunction | generateSimulink

Introduced in R2015b

generateSimulink

Class: Autoencoder
Generate a Simulink model for the autoencoder

Syntax

```
generateSimulink(autoenc)
```


Description

generateSimulink (autoenc) creates a Simulink model for the autoencoder, autoenc.

Input Arguments

autoenc - Trained autoencoder
Autoencoder object
Trained autoencoder, returned as an object of the Autoencoder class.

Examples

Generate Simulink Model for Autoencoder

Load the training data.
X = digitsmall_dataset;
The training data is a 1-by-500 cell array, where each cell containing a 28 -by- 28 matrix representing a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

```
hiddenSize = 25;
autoenc = trainAutoencoder(X,hiddenSize,...
    'L2WeightRegularization',0.004,...
    'SparsityRegularization',4,...
    'SparsityProportion',0.15);
```

Create a Simulink model for the autoencoder, autoenc.
generateSimulink(autoenc)

See Also

trainAutoencoder

Introduced in R2015b

network

Class: Autoencoder
Convert Autoencoder object into network object

Syntax

```
net = network(autoenc)
```


Description

net $=$ network (autoenc) returns a network object which is equivalent to the autoencoder, autoenc.

Input Arguments

autoenc - Trained autoencoder
Autoencoder object
Trained autoencoder, returned as an object of the Autoencoder class.

Output Arguments

net - Neural network
network object
Neural network, that is equivalent to the autoencoder autoenc, returned as an object of the network class.

Examples

Create Network from Autoencoder

Load the sample data.

```
X = bodyfat_dataset;
```

X = bodyfat_dataset;

X is a 13-by- 252 matrix defining thirteen attributes of 252 different neighborhoods. For more information on the data, type help house_dataset in the command line.

Train an autoencoder on the attribute data.

```
autoenc = trainAutoencoder(X);
```

Create a network object from the autoencoder, autoenc.

```
net = network(autoenc);
```

Predict the attributes using the network, net .

```
Xpred = net(X);
```

Fit a linear regression model between the actual and estimated attributes data. Compute the estimated Pearson correlation coefficient, the slope and the intercept (bias) of the regression model, using all attribute data as one data set.

```
[C, S, B] = regression(X, Xpred, 'one')
```

The correlation coefficient is almost 1 , which indicates that the attributes data and the estimations from the neural network are highly close to each other.

Plot the actual data and the fitted line.

```
plotregression(X, Xpred);
```


The data appears to be on the fitted line, which visually supports the conclusion that the predictions are very close to the actual data.

See Also

Autoencoder | trainAutoencoder

Introduced in R2015b

plotWeights

Class: Autoencoder
Plot a visualization of the weights for the encoder of an autoencoder

Syntax

```
plotWeights(autoenc)
h = plotWeights(autoenc)
```


Description

plotWeights (autoenc) visualizes the weights for the autoencoder, autoenc.
$h=p l o t W e i g h t s(a u t o e n c)$ returns a function handle h, for the visualization of the encoder weights for the autoencoder, autoenc.

Input Arguments

autoenc - Trained autoencoder
Autoencoder object
Trained autoencoder, returned as an object of the Autoencoder class.

Output Arguments

h — Image object
handle
Image object, returned as a handle.

Examples

Visualize Learned Features

Load the training data.

```
X = digitTrainCellArrayData;
```

The training data is a 1-by-5000 cell array, where each cell contains a 28 -by- 28 matrix representing a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer of 25 neurons.

```
hiddenSize = 25;
autoenc = trainAutoencoder(X,hiddenSize, ...
    'L2WeightRegularization',0.004, ...
    'SparsityRegularization',4, ...
    'SparsityProportion',0.2);
```

Visualize the learned features.

```
plotWeights(autoenc);
```


Tips

- plotWeights allows the visualization of the features that the autoencoder learns. Use it when the autoencoder is trained on image data. The visualization of the weights has the same dimensions as the images used for training.

See Also

trainAutoencoder

Introduced in R2015b

predict

Class: Autoencoder

Reconstruct the inputs using trained autoencoder

Syntax

$Y=$ predict (autoenc, X)

Description

$Y=$ predict (autoenc, X) returns the predictions Y for the input data X, using the autoencoder autoenc. The result Y is a reconstruction of X.

Input Arguments

autoenc - Trained autoencoder

Autoencoder object
Trained autoencoder, returned as an object of the Autoencoder class.

```
Xnew - Input data
matrix | cell array of image data | array of single image data
```

Input data, specified as a matrix of samples, a cell array of image data, or an array of single image data.

If the autoencoder autoenc was trained on a matrix, where each column represents a single sample, then Xnew must be a matrix, where each column represents a single sample.

If the autoencoder autoenc was trained on a cell array of images, then Xnew must either be a cell array of image data or an array of single image data.

Data Types: single | double | cell

Output Arguments

Y - Predictions for the input data Xnew
 matrix | cell array of image data | array of single image data

Predictions for the input data Xnew, returned as a matrix or a cell array of image data.

- If Xnew is a matrix, then Y is also a matrix, where each column corresponds to a single sample (observation or example).
- If Xnew is a cell array of image data, then Y is also a cell array of image data, where each cell contains the data for a single image.
- If Xnew is an array of a single image data, then Y is also an array of a single image data.

Examples

Predict Continuous Measurements Using Trained Autoencoder

Load the training data.

```
X = iris_dataset;
```

The training data contains measurements on four attributes of iris flowers: Sepal length, sepal width, petal length, petal width.

Train an autoencoder on the training data using the positive saturating linear transfer function in the encoder and linear transfer function in the decoder.

```
autoenc = trainAutoencoder(X,'EncoderTransferFunction',...
'satlin','DecoderTransferFunction','purelin');
```

Reconstruct the measurements using the trained network, autoenc.

```
xReconstructed = predict(autoenc,X);
```

Plot the predicted measurement values along with the actual values in the training dataset.

```
for i = 1:4
h(i) = subplot(1,4,i);
```

```
plot(X(i,:),'r.');
hold on
plot(xReconstructed(i,:),'go');
hold off;
end
title(h(1),{'Sepal';'Length'});
title(h(2),{'Sepal';'Width'});
title(h(3),{'Petal';'Length'});
title(h(4),{'Petal';'Width'});
```


The red dots represent the training data and the green circles represent the reconstructed data.

Reconstruct Handwritten Digit Images

Load the training data.

```
XTrain = digitTrainCellArrayData;
```

The training data is a 1-by-5000 cell array, where each cell containing a 28 -by-28 matrix representing a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

```
hiddenSize = 25;
autoenc = trainAutoencoder(XTrain,hiddenSize,..
    'L2WeightRegularization',0.004,...
    'SparsityRegularization',4,...
    'SparsityProportion',0.15);
```

Load the test data.

```
XTest = digitTestCellArrayData;
```

The test data is a 1-by- 5000 cell array, with each cell containing a 28 -by- 28 matrix representing a synthetic image of a handwritten digit.

Reconstruct the test image data using the trained autoencoder, autoenc.

```
xReconstructed = predict(autoenc,XTest);
```

View the actual test data.

```
figure;
for i = 1:20
    subplot(4,5,i);
    imshow(XTest{i});
end
```


View the reconstructed test data.

```
figure;
for i = 1:20
    subplot(4,5,i);
    imshow(xReconstructed{i});
end
```


See Also

trainAutoencoder

Introduced in R2015b

stack

Class: Autoencoder
Stack encoders from several autoencoders together

Syntax

```
stackednet = stack(autoenc1,autoenc2,...)
stackednet = stack(autoenc1,autoenc2,...,net1)
```


Description

stackednet $=$ stack (autoenc1, autoenc $2, \ldots$) returns a network object created by stacking the encoders of the autoencoders, autoenc1, autoenc2, and so on.
stackednet $=$ stack (autoenc1, autoenc2,..., net1) returns a network object created by stacking the encoders of the autoencoders and the network object net1.

The autoencoders and the network object can be stacked only if their dimensions match.

Input Arguments

autoenc1 - Trained autoencoder

Autoencoder object
Trained autoencoder, specified as an Autoencoder object.
autoenc2 - Trained autoencoder
Autoencoder object
Trained autoencoder, specified as an Autoencoder object.
net1 - Trained neural network
network object

Trained neural network, specified as a network object. net1 can be a softmax layer, trained using the trainSoftmaxLayer function.

Output Arguments

stackednet - Stacked neural network

network object
Stacked neural network (deep network), returned as a network object

Examples

Create a Stacked Network

Load the training data.

```
[X,T] = iris_dataset;
```

Train an autoencoder with a hidden layer of size 5 and a linear transfer function for the decoder. Set the L2 weight regularizer to 0.001 , sparsity regularizer to 4 and sparsity proportion to 0.05 .

```
hiddenSize = 5;
autoenc = trainAutoencoder(X, hiddenSize, ...
    'L2WeightRegularization', 0.001, ...
    'SparsityRegularization', 4, ...
    'SparsityProportion', 0.05, ...
    'DecoderTransferFunction','purelin');
```

Extract the features in the hidden layer.

```
features = encode(autoenc,X);
```

Train a softmax layer for classification using the features .

```
softnet = trainSoftmaxLayer(features,T);
```

Stack the encoder and the softmax layer to form a deep network.

```
stackednet = stack(autoenc,softnet);
```

View the stacked network.
view(stackednet);

- "Construct Deep Network Using Autoencoders"

Tips

- The size of the hidden representation of one autoencoder must match the input size of the next autoencoder or network in the stack.

The first input argument of the stacked network is the input argument of the first autoencoder. The output argument from the encoder of the first autoencoder is the input of the second autoencoder in the stacked network. The output argument from the encoder of the second autoencoder is the input argument to the third autoencoder in the stacked network, and so on.

- The stacked network object stacknet inherits its training parameters from the final input argument net1.

See Also

Autoencoder | trainAutoencoder

Topics

"Construct Deep Network Using Autoencoders"

Introduced in R2015b

view

Class: Autoencoder
View autoencoder

Syntax

view (autoenc)

Description

view (autoenc) returns a diagram of the autoencoder, autoenc.

Input Arguments

autoenc - Trained autoencoder
Autoencoder object
Trained autoencoder, returned as an object of the Autoencoder class.

Examples

View Autoencoder

Load the training data.
X = iris_dataset;
Train an autoencoder with a hidden layer of size 5 and a linear transfer function for the decoder. Set the L2 weight regularizer to 0.001 , sparsity regularizer to 4 and sparsity proportion to 0.05 .

```
hiddenSize = 5;
autoenc = trainAutoencoder(X, hiddenSize, ...
    'L2WeightRegularization',0.001, ...
    'SparsityRegularization',4, ...
    'SparsityProportion',0.05, ...
    'DecoderTransferFunction','purelin');
```

View the autoencoder.
view (autoenc)

See Also

trainAutoencoder

Introduced in R2015b

classificationLayer

Create classification output layer

Syntax

```
coutputlayer = classificationLayer()
coutputlayer = classificationLayer('Name',Name)
```


Description

coutputlayer = classificationLayer() returns a classification output layer for a neural network. The classification output layer holds the name of the loss function on page 1-640 that the software uses for training the network for multi-class classification, the size of the output, and the class labels.
coutputlayer = classificationLayer('Name',Name) returns a classification layer with name specified by name.

Examples

Create Classification Output Layer

Create a classification output layer with the name 'coutput'.

```
layer = classificationLayer('Name','coutput')
layer
    ClassificationOutputLayer with properties:
            Name: 'coutput'
        ClassNames: {1x0 cell}
        OutputSize: 'auto'
```

 Hyperparameters
    ```
LossFunction: 'crossentropyex'
```

The default loss function for classification is cross entropy for ${ }^{k}$ mutually exclusive classes.

Include a classification output layer in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers =
    7x1 Layer array with layers:
```

| 1 | '' | Image Input | 28x28x1 images with 'zerocenter' normalization |
| :---: | :---: | :---: | :---: |
| 2 | ' | Convolution | 205×5 convolutions with stride [1 1] and paddir |
| 3 | '' | ReLU | ReLU |
| 4 | '' | Max Pooling | 2 x 2 max pooling with stride [2 2] and padding |
| 5 | '' | Fully Connected | 10 fully connected layer |
| 6 | '' | Softmax | softmax |
| 7 | '' | Classification Output | crossentropyex |

Input Arguments

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Output Arguments

coutputlayer - Classification output layer

ClassificationOutputLayer
Classification output layer, returned as a ClassificationOutputLayer object.
For information on concatenating layers to construct convolutional neural network architecture, see Layer.

Definitions

Cross Entropy Function for k Mutually Exclusive Classes

For multiclass classification problems, the software assigns each input to one of the k mutually exclusive classes. The loss (error) function for this case is the cross entropy function for a 1 -of- k coding scheme:

$$
E(\boldsymbol{\theta})=-\sum_{i=1}^{n} \sum_{j=1}^{k} t_{i j} \ln y_{j}\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right),
$$

where $\boldsymbol{\theta}$ is the parameter vector, $t_{i j}$ is the indicator that the i th sample belongs to the
j th class, and $y_{j}\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right)$ is the output for sample i. The output $y_{j}\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right)$ can be interpreted as the probability that the network associates i th input with class j, that is,
$P\left(t_{j}=1 \mid \boldsymbol{x}_{i}\right)$.
The output unit activation function is the softmax function:
$y_{r}(\boldsymbol{x})=\frac{\exp \left(a_{r}(\boldsymbol{x})\right)}{\sum_{j=1}^{k} \exp \left(a_{j}(\boldsymbol{x})\right)}$,
where $0 \leq y_{r} \leq 1$ and $\sum_{j=1}^{k} y_{j}=1$.

References

[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

See Also

ClassificationOutputLayer | SoftmaxLayer \| regressionLayer

Introduced in R2016a

fitnet

Function fitting neural network

Syntax

```
net = fitnet(hiddenSizes)
net = fitnet(hiddenSizes,trainFcn)
```


Description

net $=$ fitnet(hiddenSizes) returns a function fitting neural network with a hidden layer size of hiddenSizes.
net $=$ fitnet (hiddenSizes, trainFen) returns a function fitting neural network with a hidden layer size of hiddenSizes and training function, specified by trainFen.

Examples

Construct and Train a Function Fitting Network

Load the training data.

```
[x,t] = simplefit_dataset;
```

The 1-by- 94 matrix x contains the input values and the 1 -by- 94 matrix t contains the associated target output values.

Construct a function fitting neural network with one hidden layer of size 10 .

```
net = fitnet(10);
```

View the network.

```
view(net)
```


The sizes of the input and output are zero. The software adjusts the sizes of these during training according to the training data.

Train the network net using the training data.

```
net = train(net,x,t);
```

View the trained network.
view (net)

You can see that the sizes of the input and output are 1.
Estimate the targets using the trained network.
$y=n e t(x) ;$
Assess the performance of the trained network. The default performance function is mean squared error.

```
perf = perform(net,y,t)
```

```
perf =
    1.4639e-04
```

The default training algorithm for a function fitting network is Levenberg-Marquardt ('trainlm'). Use the Bayesian regularization training algorithm and compare the performance results.

```
net = fitnet(10,'trainbr');
net = train(net,x,t);
y = net(x);
perf = perform(net,y,t)
perf =
```


$3.3362 e-10$

The Bayesian regularization training algorithm improves the performance of the network in terms of estimating the target values.

Input Arguments

hiddenSizes - Size of the hidden layers

10 (default) | row vector
Size of the hidden layers in the network, specified as a row vector. The length of the vector determines the number of hidden layers in the network.

Example: For example, you can specify a network with 3 hidden layers, where the first hidden layer size is 10 , the second is 8 , and the third is 5 as follows: $[10,8,5]$

The input and output sizes are set to zero. The software adjusts the sizes of these during training according to the training data.

Data Types: single | double

trainFen - Training function name

```
'trainlm'(default) | 'trainbr' | 'trainbfg' | 'trainrp' | 'trainscg' | ...
```

Training function name, specified as one of the following.

| Training Function | Algorithm |
| :--- | :--- |
| 'trainlm' | Levenberg-Marquardt |
| 'trainbr' | Bayesian Regularization |
| 'trainbfg' | BFGS Quasi-Newton |
| 'trainrp' | Resilient Backpropagation |
| 'trainscg' | Scaled Conjugate Gradient |
| 'traincgb' | Conjugate Gradient with Powell/Beale
 Restarts |
| 'traincgf' | Fletcher-Powell Conjugate Gradient |
| 'traincgp' | Polak-Ribiére Conjugate Gradient |
| 'trainoss' | One Step Secant |
| 'traingdx' | Variable Learning Rate Gradient Descent |
| 'traingdm' | Gradient Descent with Momentum |
| 'traingd' | Gradient Descent |

Example: For example, you can specify the variable learning rate gradient descent algorithm as the training algorithm as follows: 'traingdx'

For more information on the training functions, see "Train and Apply Multilayer Neural Networks" and "Choose a Multilayer Neural Network Training Function".
Data Types: char

Output Arguments

net - Function fitting network
network object
Function fitting network, returned as a network object.

Tips

- Function fitting is the process of training a neural network on a set of inputs in order to produce an associated set of target outputs. After you construct the network with the desired hidden layers and the training algorithm, you must train it using a set of training data. Once the neural network has fit the data, it forms a generalization of the input-output relationship. You can then use the trained network to generate outputs for inputs it was not trained on.

```
See Also
feedforwardnet | network | nftool | perform | train | trainlm
```


Topics

"Fit Data with a Shallow Neural Network"
"Neural Network Object Properties"
"Neural Network Subobject Properties"

Introduced in R2010b

trainingOptions

Options for training neural network

Syntax

```
options = trainingOptions(solverName)
options = trainingOptions(solverName,Name,Value)
```


Description

options = trainingOptions(solverName) returns a set of training options for the solver specified by solverName.
options = trainingOptions(solverName, Name, Value) returns a set of training options with additional options specified by one or more name-value pair arguments.

Examples

Specify Training Options

Create a set of options for training a network using stochastic gradient descent with momentum. Reduce the learning rate by a factor of 0.2 every 5 epochs. Set the maximum number of epochs for training to 20, and use a mini-batch with 64 observations at each iteration. Plot the training progress during training.

```
options = trainingOptions('sgdm',...
    'LearnRateSchedule','piecewise',...
    'LearnRateDropFactor',0.2,...
    'LearnRateDropPeriod',5,...
    'MaxEpochs',20,...
    'MiniBatchSize',64,...
    'Plots','training-progress')
```

```
TrainingOptionsSGDM with properties:
    Momentum: 0.9000
    InitialLearnRate: 0.0100
LearnRateScheduleSettings: [1x1 struct]
    L2Regularization: 1.0000e-04
                MaxEpochs: 20
            MiniBatchSize: 64
                    Verbose: 1
            VerboseFrequency: 50
            ValidationData: []
        ValidationFrequency: 50
        ValidationPatience: 5
                            Shuffle: 'once'
            CheckpointPath: ''
ExecutionEnvironment: 'auto'
            WorkerLoad: []
            OutputFcn: []
                            Plots: 'training-progress'
            SequenceLength: 'longest'
SequencePaddingValue: 0
```


Monitor Deep Learning Training Progress

When you train networks for deep learning, it is often useful to monitor the training progress. By plotting various metrics during training, you can learn how the training is progressing. For example, you can determine if and how quickly the network accuracy is improving, and whether the network is starting to overfit the training data.

When you specify 'training-progress' as the 'Plots' value in trainingoptions and start network training, trainNetwork creates a figure and displays training metrics at every iteration. Each iteration is an estimation of the gradient and an update of the network parameters. If you specify validation data in trainingOptions, then the figure shows validation metrics each time trainNetwork validates the network. The figure plots the following:

- Training accuracy - Classification accuracy on each individual mini-batch.
- Smoothed training accuracy - Smoothed training accuracy, obtained by applying a smoothing algorithm to the training accuracy. It is less noisy than the unsmoothed accuracy, making it easier to spot trends.
- Validation accuracy - Classification accuracy on the entire validation set (specified using trainingOptions).
- Training loss, smoothed training loss, and validation loss - The loss on each mini-batch, its smoothed version, and the loss on the validation set, respectively. If the final layer of your network is a classificationLayer, then the loss function is the cross entropy loss. For more information about loss functions for classification and regression problems, see "Output Layers".

For regression networks, the figure plots the root mean square error (RMSE) instead of the accuracy.

The figure marks each training Epoch using a shaded background. An epoch is a full pass through the entire data set.

During training, you can stop training and return the current state of the network by clicking the stop button in the top-right corner. For example, you might want to stop training when the accuracy of the network reaches a plateau and it is clear that the accuracy is no longer improving. After you click the stop button, it can take a while for the training to complete. Once training is complete, trainNetwork returns the trained network.

When training finishes, view the Results showing the final validation accuracy and the reason that training finished.

On the right, view information about the training time and settings. To learn more about training options, see "Set Up Parameters and Train Convolutional Neural Network".

Plot Training Progress During Training
This example shows how to train a network and plot the training progress during training.

Load the training data, which contains 5000 images of digits. Set aside 1000 of the images for network validation.

```
[trainImages,trainLabels] = digitTrain4DArrayData;
idx = randperm(size(trainImages,4),1000);
valImages = trainImages(:,:,:,idx);
trainImages(:,:,:,idx) = [];
valLabels = trainLabels(idx);
trainLabels(idx) = [];
```

Construct a network to classify the digit image data.

```
layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,16,'Padding',1)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32,'Padding',1)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,64,'Padding',1)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];
```

Specify options for network training. To validate the network at regular intervals during training, specify validation data. Choose the 'ValidationFrequency' value so that the network is validated about once per epoch. To plot training progress during training, specify 'training-progress' as the 'Plots' value.

```
options = trainingOptions('sgdm',...
    'MaxEpochs',6, ...
    ValidationData',{valImages,valLabels},...
    'ValidationFrequency',30,...
    'Verbose',false,...
    'Plots','training-progress');
```

Train the network.

```
net = trainNetwork(trainImages,trainLabels,layers,options);
```


Stop Training Using Output Function

By default, using the 'ValidationData' name-value pair argument stops training when the loss on the validation set stops decreasing. You can add additional stopping criteria using output functions. This example shows how to create an output function that stops training when the classification accuracy on the validation data stops improving. The output function is defined at the end of the script.

Load the training data, which contains 5000 images of digits. Set aside 1000 of the images for network validation.

```
[trainImages,trainLabels] = digitTrain4DArrayData;
idx = randperm(size(trainImages,4),1000);
valImages = trainImages(:,:,:,idx);
```

```
trainImages(:,:,:,idx) = [];
valLabels = trainLabels(idx);
trainLabels(idx) = [];
```

Construct a network to classify the digit image data.

```
layers = [
    imageInputLayer([[28 28 1])
    convolution2dLayer(3,16,'Padding',1)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32,'Padding',1)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,64,'Padding',1)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];
```

Specify options for network training. To validate the network at regular intervals during training, specify validation data. Choose the 'ValidationFrequency' value so that the network is validated twice per epoch. Turn off the built-in validation stopping criterion (which uses the loss) by setting the 'ValidationPatience' value to Inf.

To stop training when the classification accuracy on the validation set stops improving, specify stopIfAccuracyNotImproving as an output function. The second input argument of stopIfAccuracyNotImproving is the number of times that the accuracy on the validation set can be smaller than or equal to the previously highest accuracy before network training stops. Choose any large value for the maximum number of epochs to train. Training should not reach the final epoch because training stops automatically.

```
miniBatchSize = 256;
numValidationsPerEpoch = 2;
```

```
validationFrequency = floor(size(trainImages,4)/miniBatchSize/numValidationsPerEpoch);
options = trainingOptions('sgdm',...
    'InitialLearnRate',0.01,...
    'MaxEpochs',100,...
    'MiniBatchSize',miniBatchSize,...
    'VerboseFrequency',validationFrequency,...
    'ValidationData',{valImages,valLabels},...
    'ValidationFrequency',validationFrequency,...
    'ValidationPatience',Inf,...
    'Plots','training-progress',...
    'OutputFcn',@(info)stopIfAccuracyNotImproving(info,3));
```

Train the network. Training stops when the validation accuracy stops increasing.

```
net = trainNetwork(trainImages,trainLabels,layers,options);
Training on single GPU.
Initializing image normalization.
```


Output Function

Define the output function stopIfAccuracyNotImproving (info, N), which stops network training if the best classification accuracy on the validation data does not improve for N network validations in a row. This criterion is similar to the built-in stopping criterion using the validation loss, except that it applies to the classification accuracy instead of the loss.

```
function stop = stopIfAccuracyNotImproving(info,N)
stop = false;
% Keep track of the best validation accuracy and the number of validations for which
% there has not been an improvement of the accuracy.
persistent bestValAccuracy
persistent valLag
```

```
% Clear the variables when training starts.
if info.State == "start"
    bestValAccuracy = 0;
    valLag = 0;
elseif ~isempty(info.ValidationLoss)
    % Compare the current validation accuracy to the best accuracy so far,
    % and either set the best accuracy to the current accuracy, or increase
    % the number of validations for which there has not been an improvement.
    if info.ValidationAccuracy > bestValAccuracy
        valLag = 0;
        bestValAccuracy = info.ValidationAccuracy;
    else
        valLag = valLag + 1;
    end
    % If the validation lag is at least N, that is, the validation accuracy
    % has not improved for at least N validations, then return true and
    % stop training.
    if valLag >= N
        stop = true;
    end
end
end
```

- "Create Simple Deep Learning Network for Classification"
- "Transfer Learning Using AlexNet"
- "Resume Training from a Checkpoint Network"
- "Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud"

Input Arguments

solverName - Solver for training network

'sgdm'
Solver to use for training the network. You must specify 'sgdm' (Stochastic Gradient Descent with Momentum on page 1-666).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes ($'$ '). You can specify several name and value pair arguments in any order as Name1,Value1, ..., NameN, ValueN.

Example: 'InitialLearningRate',0.03,'L2Regularization', 0.0005 ,'LearnRateSchedule','piecewise' specifies the initial learning rate as 0.03 and the L2 regularization factor as 0.0005 , and instructs the software to drop the learning rate every given number of epochs by multiplying with a certain factor.

```
Plots - Plots to display during network training
'none' (default) | 'training-progress'
```

Plots to display during network training, specified as the comma-separated pair consisting of 'Plots' and one of the following:

- 'none' - Do not display plots during training.
- 'training-progress'- Plot training progress. The plot shows mini-batch loss and accuracy, validation loss and accuracy, and additional information on the training progress. The plot has a stop button © in the top-right corner. Click the button to stop training and return the current state of the network. For more information on the training progress plot, see "Monitor Deep Learning Training Progress" on page 1648.

Example: 'Plots','training-progress'
Data Types: char

CheckpointPath — Path for saving checkpoint networks
 ' ' (default) | character vector

Path for saving the checkpoint networks, specified as the comma-separated pair consisting of 'CheckpointPath' and a character vector.

- If you do not specify a path (that is, you use the default ' '), then the software does not save any checkpoint networks.
- If you specify a path, then trainNetwork saves checkpoint networks to this path after every epoch and assigns a unique name to each network. You can then load any checkpoint network and resume training on page 1-667 from that network.

If the directory does not already exist, then you must first create it before specifying the path for saving the checkpoint networks. If the path you specify does not exist, then trainingOptions returns an error.

Example: 'CheckpointPath','C:\Temp \checkpoint'
Data Types: char

ExecutionEnvironment - Hardware resource for training network

```
'auto'(default) | 'cpu' | 'gpu' | 'multi-gpu' | 'parallel'
```

Hardware resource for training network, specified as one of the following:

- 'auto' - Use a GPU if one is available. Otherwise, use the CPU.
- 'cpu' - Use the CPU.
- 'gpu' - Use the GPU.
- 'multi-gpu' - Use multiple GPUs on one machine, using a local parallel pool. If no pool is already open, then the software opens one with one worker per supported GPU device.
- 'parallel' - Use a local parallel pool or compute cluster. If no pool is already open, then the software opens one using the default cluster profile. If the pool has access to GPUs, then the software uses them and leaves excess workers idle. If the pool does not have GPUs, then the training takes place on all cluster CPUs.

GPU, multi-GPU, and parallel options require Parallel Computing Toolbox.To use a GPU, you must also have a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher. If you choose one of these options and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.

To see an improvement in performance when training in parallel, try increasing MiniBatchSize to offset the communication overhead.

To train directed acyclic graph (DAG) or long short-term memory (LSTM) networks, the hardware resource must be 'auto', 'cpu', or 'gpu'.

Example: 'ExecutionEnvironment','cpu'

InitialLearnRate - Initial learning rate

0.01 (default) | positive scalar

Initial learning rate used for training, specified as the comma-separated pair consisting of 'InitialLearnRate' and a positive scalar. If the learning rate is too low, then
training takes a long time. If the learning rate is too high, then training might reach a suboptimal result.

Example: 'InitialLearnRate',0.03
Data Types: single | double

LearnRateSchedule - Option for dropping learning rate during training
 'none' (default) | 'piecewise'

Option for dropping the learning rate during training, specified as the comma-separated pair consisting of 'LearnRateSchedule' and one of the following:

- 'none' - The learning rate remains constant throughout training.
- 'piecewise' - The software updates the learning rate every certain number of epochs by multiplying with a certain factor. Use the LearnRateDropFactor namevalue pair argument to specify the value of this factor. Use the LearnRateDropPeriod name-value pair argument to specify the number of epochs between multiplications.

Example: 'LearnRateSchedule','piecewise'

LearnRateDropFactor - Factor for dropping the learning rate

0.1 (default) | scalar from 0 to 1

Factor for dropping the learning rate, specified as the comma-separated pair consisting of 'LearnRateDropFactor' and a scalar from 0 to 1 . This option is valid only when the value of LearnRateSchedule is 'piecewise'.

LearnRateDropFactor is a multiplicative factor to apply to the learning rate every time a certain number of epochs passes. Specify the number of epochs using the LearnRateDropPeriod name-value pair argument.

Example: 'LearnRateDropFactor', 0.02
Data Types: single | double

LearnRateDropPeriod - Number of epochs for dropping the learning rate

 10 (default) | positive integerNumber of epochs for dropping the learning rate, specified as the comma-separated pair consisting of 'LearnRateDropPeriod' and a positive integer. This option is valid only when the value of LearnRateSchedule is 'piecewise'.

The software multiplies the global learning rate with the drop factor every time the specified number of epochs passes. Specify the drop factor using the LearnRateDropFactor name-value pair argument.

Example: 'LearnRateDropPeriod',3

L2Regularization - Factor for L_{2} regularizer

0.0001 (default) | nonnegative scalar

Factor for L_{2} regularizer on page 1-667 (weight decay), specified as the commaseparated pair consisting of 'L2Regularization' and a nonnegative scalar.

You can specify a multiplier for the L_{2} regularizer for network layers with learnable parameters.

Example:'L2Regularization',0.0005
Data Types: single | double
MaxEpochs - Maximum number of epochs
30 (default) | positive integer
Maximum number of epochs to use for training, specified as the comma-separated pair consisting of 'MaxEpochs' and a positive integer.

An iteration is one step taken in the gradient descent algorithm towards minimizing the loss function using a mini-batch. An epoch is the full pass of the training algorithm over the entire training set.

Example: 'MaxEpochs',20

MiniBatchSize - Size of mini-batch

128 (default) | positive integer
Size of the mini-batch to use for each training iteration, specified as the commaseparated pair consisting of 'MiniBatchSize' and a positive integer. A mini-batch is a subset of the training set that is used to evaluate the gradient of the loss function and update the weights. See "Stochastic Gradient Descent with Momentum" on page 1-666.
Example: 'MiniBatchSize',256

Momentum - Contribution of previous gradient step

0.9 (default) | a scalar from 0 to 1

Contribution of the gradient step from the previous iteration to the current iteration of the training, specified as the comma-separated pair consisting of 'Momentum' and a scalar from 0 to 1 . A value of 0 means no contribution from the previous step, whereas a value of 1 means maximal contribution from the previous step.

Example: 'Momentum',0.8
Data Types: single | double

SequenceLength - Option to pad, truncate, or split input sequences

```
'longest'(default)| 'shortest' | positive integer
```

Option to pad, truncate, or split input sequences, specified as one of the following:

- 'longest' - Pad sequences in the each mini-batch to have the same length as the longest sequence.
- 'shortest' - Truncate sequences in each mini-batch to have the same length as the shortest sequence.
- Positive integer - Pad sequences in each mini-batch to have the same length as the longest sequence, then split into smaller sequences of the specified length. If splitting occurs, then the function creates extra mini-batches.

```
Example:'SequenceLength','shortest'
```


SequencePaddingValue - Value to pad input sequences

0 (default) | scalar

Value by which to pad input sequences, specified as a scalar. The option is valid only when SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN , because doing so can propagate errors throughout the network.

Example: 'SequencePaddingValue',-1

Shuffle - Option for data shuffling

'once' (default) | 'never' | 'every-epoch'
Option for data shuffling, specified as the comma-separated pair consisting of 'Shuffle' and one of the following:

- 'once' - Shuffle the training and validation data once before training.
- 'never' - Do not shuffle the data.
- 'every-epoch ' - Shuffle the training data before each training epoch, and shuffle the validation data before each network validation. If the mini-batch size does not evenly divide the number of training samples, then trainNetwork discards the training data that does not fit into the final complete mini-batch of each epoch. To avoid discarding the same data every epoch, set the 'Shuffle' value to 'everyepoch'.

Example: 'Shuffle','every-epoch'

Verbose - Indicator to display training progress information 1 (default) | 0

Indicator to display training progress information in the command window, specified as the comma-separated pair consisting of 'Verbose' and either 1 (true) or 0 (false).

The displayed information includes the epoch number, iteration number, time elapsed, mini-batch loss, mini-batch accuracy, and base learning rate. When you train a regression network, root mean square error (RMSE) is shown instead of accuracy. If you validate the network during training, then the displayed information also includes the validation loss and validation accuracy (or RMSE). Use the 'ValidationData' namevalue pair to specify validation data.

Example: 'Verbose',0
Data Types: logical

VerboseFrequency - Frequency of verbose printing 50 (default) | positive integer

Frequency of verbose printing, which is the number of iterations between printing to the command window, specified as the comma-separated pair consisting of 'VerboseFrequency' and a positive integer. This option only has an effect when the 'Verbose' value equals true.

If you validate the network during training, then trainNetwork also prints to the command window every time validation occurs.

WorkerLoad - Worker load division

evenly divided (default) | numeric vector
Worker load division for GPUs or CPUs, specified as the comma-separated pair consisting of 'WorkerLoad' and a numeric vector. This option has an effect only when
the 'ExecutionEnvironment' value equals 'multi-gpu' or 'parallel'. The specified vector must contain one value per worker in the parallel pool. For a vector \boldsymbol{w},
each worker gets $w_{i} / \sum w_{i}$ of the work. Use this option to balance the workload between unevenly performing hardware.

OutputFen - Output functions

function handle | cell array of function handles
Output functions to call during training, specified as the comma-separated pair consisting of 'OutputFen' and a function handle or cell array of function handles. trainNetwork calls the specified functions once before the start of training, after each iteration, and once after training has finished. trainNetwork passes a structure containing information in the following fields:

| Field | Description |
| :--- | :--- |
| Epoch | Current epoch number |
| Iteration | Current iteration number |
| TimeSinceStart | Time in seconds since the start of training |
| TrainingLoss | Current mini-batch loss |
| ValidationLoss | Loss on the validation data |
| BaseLearnRate | Current base learning rate |
| TrainingAccuracy | Accuracy on the current mini-batch
 (classification networks) |
| TrainingRMSE | RMSE on the current mini-batch
 (regression networks) |
| ValidationAccuracy | Accuracy on the validation data
 (classification networks) |
| ValidationRMSE | RMSE on the validation data (regression
 networks) |
| State | Current training state, with a possible
 value of "start", "iteration", or
 "done" |

If a field is not calculated or relevant for a certain call to the output functions, then that field contains an empty array.

You can use output functions to display or plot progress information, or to stop training. To stop training early, make your output function return true. If any output function returns true, then training finishes and trainNetwork returns the latest network. For an example showing how to stop training early, see "Stop Training Using Output Function" on page 1-652.

Data Types: function_handle | cell

ValidationData - Data to use for validation during training
 ImageDatastore | table | cell array

Data to use for validation during training, specified as the comma-separated pair consisting of 'ValidationData' and one of the following:

- ImageDatastore with categorical labels for image classification problems.
- table, where the first column contains either image paths or images, and the subsequent columns contain the responses. For an image classification problem, the response must be a categorical variable in the second table column. For a regression problem, the responses can be either in multiple columns as scalars, or in a single column as numeric vectors or cell arrays containing numeric 3-D arrays.
- cell array $\{X, Y\}$, where X is a numeric array of images and Y contains the responses. The first three dimensions of X are the height, width, and channels, and the last dimension is the image index. For an image classification problem, y must be a categorical vector. For a regression problem, y must be a numeric array. For more information on the allowed shape of Y, see details on page 1-0 on the trainNetwork page.

During training, trainNetwork predicts the labels of the validation data and calculates the validation accuracy and validation loss. To specify the validation frequency, use the 'ValidationFrequency' name-value pair argument. By default, if the validation loss is larger than or equal to the previously smallest loss five times in a row, then network training stops. To change the number of times that the validation loss is allowed to not decrease before training stops, use the 'ValidationPatience' name-value pair argument.

If your network has layers that behave differently during prediction than during training (for example, dropout layers), then the validation accuracy can be higher than the training (mini-batch) accuracy.

The validation data is shuffled according to the 'Shuffle' value. If the 'Shuffle' value equals 'every-epoch', then the validation data is shuffled before each network validation.

You cannot specify validation data when training long short-term memory (LSTM) networks.

Note You cannot specify validation data using an augmentedImageSource, denoisingImageSource, or pixelLabelImageSource.

Example: 'ValidationData',imds

ValidationFrequency - Frequency of network validation

50 (default) | positive integer
Frequency of network validation in number of iterations, specified as the commaseparated pair consisting of 'ValidationFrequency' and a positive integer.

The 'ValidationFrequency' value is the number of iterations between evaluations of validation metrics. To specify validation data, use the 'ValidationData' name-value pair argument.

Example: 'ValidationFrequency', 20

ValidationPatience - Patience of validation stopping

5 (default) | positive integer | Inf
Patience of validation stopping of network training, specified as the comma-separated pair consisting of 'ValidationPatience' and a positive integer or Inf.

The 'ValidationPatience' value is the number of times that the loss on the validation set can be larger than or equal to the previously smallest loss before network training stops. To turn off automatic validation stopping, specify Inf as the 'ValidationPatience' value. To specify validation data, use the 'ValidationData' name-value pair argument.
Example: 'ValidationPatience',4

Output Arguments

options - Training options

object
Training options, returned as an object.
For the sgdm training solver, options is a TrainingOptionsSGDM object.

Algorithms

Initial Weights and Biases

The default for the initial weights is a Gaussian distribution with a mean of 0 and a standard deviation of 0.01 . The default for the initial bias value is 0 . You can manually change the initialization for the weights and biases. See "Specify Initial Weights and Biases in Convolutional Layer" on page 1-773 and "Specify Initial Weights and Biases in Fully Connected Layer" on page 1-795.

Stochastic Gradient Descent with Momentum

The gradient descent algorithm updates the parameters (weights and biases) to minimize the error function by taking small steps in the direction of the negative gradient of the loss function on page 1-640 [1]

$$
\boldsymbol{\theta}_{\ell+1}=\boldsymbol{\theta}_{\ell}-\alpha \nabla E\left(\boldsymbol{\theta}_{\ell}\right),
$$

where ℓ stands for the iteration number, $\alpha>0$ is the learning rate, θ is the parameter vector, and $E(\theta)$ is the loss function. The gradient of the loss function, $\nabla E(\theta)$, is evaluated using the entire training set, and the standard gradient descent algorithm uses the entire data set at once. The stochastic gradient descent algorithm evaluates the gradient and updates the parameters using a subset of the training set. This subset is called a mini-batch.

Each evaluation of the gradient using the mini-batch is an iteration. At each iteration, the algorithm takes one step towards minimizing the loss function. The full pass of the training algorithm over the entire training set using mini-batches is an epoch. You can
specify the mini-batch size and the maximum number of epochs using the MiniBatchSize and MaxEpochs name-value pair arguments, respectively.

The gradient descent algorithm might oscillate along the steepest descent path to the optimum. Adding a momentum term to the parameter update is one way to prevent this oscillation [2]. The stochastic gradient descent update with momentum is

$$
\boldsymbol{\theta}_{\ell+1}=\boldsymbol{\theta}_{\ell}-\alpha \nabla E\left(\boldsymbol{\theta}_{\ell}\right)+\gamma\left(\boldsymbol{\theta}_{\ell}-\boldsymbol{\theta}_{\ell-1}\right),
$$

where γ determines the contribution of the previous gradient step to the current iteration. You can specify this value using the Momentum name-value pair argument.

By default, the software shuffles the data once before training. You can change this setting using the Shuffle on page 1-0 name-value pair argument.

L2 Regularization

Adding a regularization term for the weights to the loss function on page 1-640 $E(\theta)$ is one way to reduce overfitting [1], [2]. The regularization term is also called weight decay. The loss function with the regularization term takes the form

$$
E_{R}(\boldsymbol{\theta})=E(\theta)+\lambda \Omega(\boldsymbol{w}),
$$

where \boldsymbol{w} is the weight vector, λ is the regularization factor (coefficient), and the regularization function $\Omega(\boldsymbol{w})$ is

$$
\Omega(\boldsymbol{w})=\frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{w}
$$

Note that the biases are not regularized [2]. You can specify the regularization factor, λ, using the L2Regularization name-value pair argument.

Save Checkpoint Networks and Resume Training

trainNetwork enables you to save checkpoint networks as .mat files during training. You can then resume training from any checkpoint network. If you want trainNetwork to save checkpoint networks, then you must specify the name of the path by using the CheckpointPath name-value pair argument of trainingOptions. If the path you specify is incorrect, then trainingOptions returns an error.
trainNetwork automatically assigns a unique name to each checkpoint network file, for example, convnet_checkpoint__351__2016_11_09__12_04_23.mat. In this example, 351 is the iteration number, 2016_11_09 is the date, and 12_04_23 is the time at which trainNetwork saves the network. You can load a checkpoint network file by double-clicking it or entering the load command at the command line. For example:

```
load convnet_checkpoint__351__2016_11_09__12_04_23.mat
```

You can then resume training by using the layers of this network in the call to trainNetwork. For example:
trainNetwork(Xtrain,Ytrain, net.Layers,options)
You must manually specify the training options and the input data because the checkpoint network does not contain this information.

References

[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.
[2] Murphy, K. P. Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge, Massachusetts, 2012.

See Also

Convolution2dLayer | FullyConnectedLayer | TrainingOptionsSGDM | trainNetwork

Topics

"Create Simple Deep Learning Network for Classification"
"Transfer Learning Using AlexNet"
"Resume Training from a Checkpoint Network"
"Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud"
"Learn About Convolutional Neural Networks"
"Specify Layers of Convolutional Neural Network"
"Set Up Parameters and Train Convolutional Neural Network"

Introduced in R2016a

trainNetwork

Train neural network for deep learning
Use trainNetwork to train a convolutional neural network (ConvNet, CNN) or a long short-term memory (LSTM) network for deep learning classification or regression problems. You can train a network on either a CPU, a GPU, multiple GPUs, or in parallel. Using GPU, multi-GPU, and parallel options require Parallel Computing Toolbox. To use a GPU, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. Specify training options including the execution environment using trainingoptions.

Syntax

```
trainedNet = trainNetwork(imds,layers,options)
trainedNet = trainNetwork(mbs,layers,options)
trainedNet = trainNetwork(X,Y,layers,options)
trainedNet = trainNetwork(C,Y,layers,options)
trainedNet = trainNetwork(tbl,layers,options)
trainedNet = trainNetwork(tbl,responseName,layers,options)
trainedNet = trainNetwork(tbl,responseNames,layers,options)
[trainedNet,traininfo] = trainNetwork( ___)
```


Description

trainedNet = trainNetwork(imds, layers, options) trains a network for image classification problems. imds stores the input image data, layers defines the network architecture, and options defines the training options.
trainedNet = trainNetwork(mbs, layers, options) trains a network for image classification and regression problems. mbs is an augmented image source, denoising image source, or pixel label image source, that preprocesses images for deep learning.
trainedNet $=$ trainNetwork(X,Y,layers,options) trains a network for image classification and regression problems. X contains the predictor variables and Y contains the categorical labels or numeric responses.
trainedNet $=$ trainNetwork(C,Y,layers, options) trains an LSTM network for sequence-to-label and sequence-to-sequence classification problems. C is a cell array containing sequence or time series predictors and Y contains the categorical labels or categorical sequences.
trainedNet $=$ trainNetwork(tbl, layers,options) trains a network for classification and regression problems. tbl contains the predictors and the targets or response variables. The predictors must be in the first column of tbl. For information on the targets or response variables, see the t.bl argument description.
trainedNet = trainNetwork(tbl, responseName, layers,options) trains a network for classification and regression problems. The predictors must be in the first column of tbl. The responseName argument specifies the response variable in the table tbl.
trainedNet $=$ trainNetwork(tbl,responseNames, layers,options) trains a network for regression problems. The predictors must be in the first column of tbl. The responseNames argument specifies the response variables in the table tbl.
[trainedNet, traininfo] = trainNetwork (__) also returns information on the training for any of the input arguments.

Examples

Train a Convolutional Neural Network Using Data in ImageDatastore

Load the data as an ImageDatastore object.

```
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos',...
    'nndatasets','DigitDataset');
digitData = imageDatastore(digitDatasetPath,...
    'IncludeSubfolders',true,'LabelSource','foldernames');
```

The data store contains 10000 synthetic images of digits $0-9$. The images are generated by applying random transformations to digit images created using different fonts. Each digit image is 28 -by- 28 pixels.

Display some of the images in the datastore.

```
figure;
perm = randperm(10000,20);
for i = 1:20
    subplot(4,5,i);
    imshow(digitData.Files{perm(i) });
end
```


Check the number of images in each digit category.
digitData.countEachLabel
ans $=$
10×2 table

| Label | Count | |
| :--- | :--- | :--- |
| | | |
| 0 | | 1000 |
| 1 | | 1000 |
| 2 | | 1000 |
| 3 | | 1000 |
| 4 | | 1000 |
| 5 | | 1000 |
| 6 | | 1000 |
| 7 | | 1000 |
| 8 | | 1000 |

The data contains an equal number of images per category.
Divide the data set so that each category in the training set has 750 images and the testing set has the remaining images from each label.

```
trainingNumFiles = 750;
rng(1) % For reproducibility
[trainDigitData,testDigitData] = splitEachLabel(digitData,...
    trainingNumFiles,'randomize');
```

splitEachLabel splits the image files in digitData into two new datastores, trainDigitData and testDigitData.

Define the convolutional neural network architecture.

```
layers = [imageInputLayer([28 28 1]);
    convolution2dLayer(5,20);
    reluLayer();
    maxPooling2dLayer(2,'Stride',2);
    fullyConnectedLayer(10);
    softmaxLayer();
    classificationLayer()];
```

Set the options to default settings for the stochastic gradient descent with momentum. Set the maximum number of epochs at 20, and start the training with an initial learning rate of 0.001 .

```
options = trainingOptions('sgdm','MaxEpochs',20,...
    'InitialLearnRate',0.0001);
```

Train the network.

```
convnet = trainNetwork(trainDigitData,layers,options);
Training on single GPU.
Initializing image normalization.
```


Run the trained network on the test set that was not used to train the network and predict the image labels (digits).

```
YTest = classify(convnet,testDigitData);
TTest = testDigitData.Labels;
```

Calculate the accuracy.

```
accuracy = sum(YTest == TTest)/numel(TTest)
```

```
accuracy =
```

0.9852

Accuracy is the ratio of the number of true labels in the test data matching the classifications from classify, to the number of images in the test data. In this case about 98.5% of the digit estimations match the true digit values in the test set.

Construct and Train a Convolutional Neural Network

Load the training data.
load lettersTrainSet
XTrain contains 1500 28-by-28 grayscale images of the letters A, B, and C in a 4-D array. There are equal numbers of each letter in the data set. TTrain contains the categorical array of the letter labels.

Display some of the letter images.

```
figure;
perm = randperm(1500,20);
for i = 1:20
    subplot(4,5,i);
    imshow(XTrain(:,:,:,perm(i)));
end
```


Define the convolutional neural network architecture.

```
layers = [imageInputLayer([28 28 1]);
    convolution2dLayer (5,16);
    reluLayer();
    maxPooling2dLayer(2,'Stride',2);
    fullyConnectedLayer(3);
    softmaxLayer();
    classificationLayer()];
```

Set the options to default settings for the stochastic gradient descent with momentum. options = trainingOptions('sgdm');

Train the network.

```
rng('default') % For reproducibility
net = trainNetwork(XTrain,TTrain,layers,options);
Training on single GPU.
Initializing image normalization.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Epoch & Iteration & Time Elapsed (seconds) & Mini-batch Loss & Mini-batch Accuracy & Base Learr Rate \\
\hline 1 & 1 & 3.55 & 1.0994 & \(27.34 \%\) & 0.0 \\
\hline 5 & 50 & 4.66 & 0.2175 & 98.44\% & 0.0 \\
\hline 10 & 100 & 5.42 & 0.0238 & 100.00\% & 0.0 \\
\hline 14 & 150 & 6.18 & 0.0108 & 100.00\% & 0.0 \\
\hline 19 & 200 & 6.93 & 0.0088 & 100.00\% & 0.0 \\
\hline 23 & 250 & 7.68 & 0.0048 & 100.00\% & 0.0 \\
\hline 28 & 300 & 8.44 & 0.0035 & \(100.00 \%\) & 0.0 \\
\hline 30 & 330 & 8.88 & 0.0052 & 100.00\% & 0.0 \\
\hline
\end{tabular}
```

Run the trained network on a test set that was not used to train the network and predict the image labels (letters).

```
load lettersTestSet;
```

XTest contains 1500 28-by-28 grayscale images of the letters A, B, and C in a 4-D array. There is again equal numbers of each letter in the data set. TTest contains the categorical array of the letter labels.

```
YTest = classify(net,XTest);
```

Calculate the accuracy.

```
accuracy = sum(YTest == TTest)/numel(TTest)
accuracy =
    0.9273
```


Construct and Train an LSTM Network

Load the Japanese Vowels dataset as described in [1] and [2]. X is a cell array containing 270 sequences of dimension 12 of varying length. Y is a categorical vector of labels "1","2",...,"9".
load JapaneseVowelsTrain
The entries in X are matrices with 12 rows (one row for each feature) and varying number of columns (one column for each time step). Visualize the first time series in a plot. Each subplot corresponds to a feature.

```
figure
for i = 1:12
    subplot(12,1,13-i)
    plot(X{1}(i,:));
    ylabel(i)
    xticklabels('')
    yticklabels('')
    box off
end
title("Training Observation 1")
subplot(12,1,12)
xticklabels('auto')
xlabel("Time Step")
```


Define the LSTM network architecture. Specify the inputs size to be sequences of size 12 (the dimension of the input data). Specify an LSTM layer to have output size of 100 and output the last element of the sequence. Finally, specify that there are 9 classes by including a fully connected layer of size 9 , followed by a softmax layer and a classification layer.

```
inputSize = 12;
outputSize = 100;
outputMode = 'last';
numClasses = 9;
layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(outputSize,'OutputMode',outputMode)
    fullyConnectedLayer(numClasses)
```

```
softmaxLayer
classificationLayer]
```


layers =

5x1 Layer array with layers:

| 1 | '' | Sequence Input | Sequence input with 12 dimensions |
| :--- | :--- | :--- | :--- |
| 2 | '' | LSTM | LSTM with 100 hidden units |
| 3 | $' '$ | Fully Connected | 9 fully connected layer |
| 4 | '' | Softmax | Softmax |
| 5 | '' | Classification Output | crossentropyex |

Specify the training options. Choose mini-batch size of 27 and set the maximum number of epochs to 150 .

```
maxEpochs = 150;
miniBatchSize = 27;
options = trainingOptions('sgdm', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize);
```

Train the LSTM network with the specified training options using trainNetwork.

| 75 | 750 | 115.94 | 1.4408 | 33.33\% | 0.01 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 180 | 800 | 123.73 | 1.3130 | 44.44% | 0.01 |
| 185 | 850 | 131.65 | 1.0004 | 70.37% | 0.01 |
| 190 | 900 | 139.56 | 0.7564 | 81.48\% | 0.01 |
| 195 | 950 | 147.32 | 0.5176 | 88.89\% | 0.01 |
| 1100 | 1000 | 155.05 | 0.4757 | 88.89\% | 0.01 |
| 1105 | 1050 | 162.86 | 0.4270 | 88.89\% | 0.01 |
| \| 110 | 1100 | 170.70 | 0.2822 | 92.59\% | 0.01 |
| \| 115 | 1150 | 178.57 | 0.2446 | 92.59\% | 0.01 |
| \| 120 | 1200 | 186.20 | 0.3388 | 88.89\% | 0.01 |
| 1125 | 1250 | 193.92 | 0.2865 | 88.89\% | 0.01 |
| 1130 | 1300 | 201.75 | 0.4839 | 74.07% | 0.01 |
| 1135 | 1350 | 209.50 | 0.2142 | 100.00\% | 0.01 |
| 1140 | 1400 | 217.22 | 0.1650 | 92.59\% | 0.01 |
| 1145 | 1450 | 225.12 | 0.1278 | 96.30\% | 0.01 |
| 1150 | 1500 | 232.84 | 0.0906 | 100.00\% | 0.01 |

Load the test set and classify the sequences into speakers.
load JapaneseVowelsTest
Classify the test data. Set the mini-batch size to 27 .

```
miniBatchSize = 27;
YPred = classify(net,XTest, ...
    'MiniBatchSize',miniBatchSize);
```

Calculate the classification accuracy of the predictions.

```
acc = sum(YPred == YTest)./numel(YTest)
acc = 0.8892
```

- "Create Simple Deep Learning Network for Classification"
- "Transfer Learning Using AlexNet"
- "Classify Sequence Data Using LSTM Networks"

Input Arguments

imds - Images with labels

ImageDatastore object

Images with labels, specified as an ImageDatastore object with categorical labels. You can store data in ImageDatastore for only image classification networks.

ImageDatastore allows batch-reading of JPG or PNG image files using pre-fetching. If you use a custom function for reading the images, pre-fetching does not happen.

mbs - Image source for preprocessing

augmentedImageSource | denoisingImageSource | pixelLabelImageSource
Image source, specified as one of the following:

- An augmentedImageSource that preprocesses images for deep learning. For example, an augmented image source can resize, rotate, and reflect input images.
- A denoisingImageSource that preprocesses images for use in training denoising networks. For example, a denoising image source can add gaussian noise to input images.
- A pixelLabel ImageSource that specifies inputs and responses when training semantic segmentation networks.

x - Images

4-D numeric array
Images, specified as a 4-D numeric array. The first three dimensions must be the height, width, and channels, and the last dimension must index the individual images.

If the array contains NaNs, then they are propagated through the training, however, in most cases the training fails to converge.

Data Types: single | double

C - Sequences or time series data

cell array of matrices
Sequences or time series data, specified as a cell array of matrices. C is a N-by- 1 cell array where N is the number of observations. Each entry of C is a time series represented by a matrix with rows corresponding to data points, and columns corresponding to time steps.

For sequence-to-label and sequence-to-sequence classification problems, layers must define an LSTM network. It must begin with a sequence input layer.

Data Types: cell

Y — Responses

categorical vector of labels | matrix | 4-D numeric array | cell array of categorical row vectors

Responses, specified as a categorical vector of labels, a matrix, a 4-D numeric array, or a cell array of categorical row vectors.

For image and sequence-to-label classification problems, Y is a categorical vector of labels.

For sequence-to-sequence classification problems, Y is a cell array of categorical row vectors. Each row vector is represents a sequence of labels corresponding to the input sequence. The row vectors must have the same number of time steps as the corresponding input sequences.

For sequence-to-label and sequence-to-sequence classification problems, layers must define an LSTM network. It must begin with a sequence input layer.

For regression problems, Y can be one of the following:

- N-by- r matrix, where N is the number of observations and r is the number of responses
- h-by- w-by- c-by- N numeric array, where N is the number of observations and h-by- w -by- c is the size of a single response.

Responses must not contain NaNs.
Data Types: cell | categorical | double
tbl - Input data
table
Input data, specified as a table containing predictors in the first column and responses in the remaining column or columns. Each row in the table corresponds to an observation.

The arrangement of the predictors and the responses in the columns of the table depend on the type of problem. The following table describes the predictors and the responses in the table.

| Predictors | For image classification and regression problems:
 - Absolute or relative paths to an image, specified as a character vector
 - Image specified as a 3-D numeric array
 For sequence-to-label and sequence-to-sequence classification problems:
 - Absolute or relative MAT file paths of sequence or time series data. The MAT files must contain a time series represented by a matrix with rows corresponding to data points, and columns corresponding to time steps. |
| :---: | :---: |
| Responses | For image and sequence-to-label classification problems:
 - A single column of scalar categorical labels
 For sequence-to-sequence classification problems:
 - A single column of absolute or relative file paths to MAT files. The MAT files must contain a time series represented by a vector with entries corresponding to labels for each time step.
 For regression problems:
 - One or more columns of scalar values
 - A single column of numeric vectors
 - A single column of 1-by-1 cell arrays containing a 3-D numeric array |

For classification problems, if you do not specify the name of the response variable in the call to trainNetwork, then the function, by default, uses the responses in the second column. To specify the responses in a different column of $t . b l$, then use the responseName positional argument. For sequence-to-label and sequence-to-sequence classification problems, layers must define an LSTM network. It must begin with a sequence input layer.

For regression problems, if you do not specify the names of the response variable or variables in the call to trainNetwork, then the function, by default, uses the remaining
columns of t.bl. To specify the responses in a different column of t.bl, then use the responseNames positional argument.

Responses must not contain NaNs. If the predictor data contains NaNs, then they are propagated through the training, however, usually the training fails to converge.

Data Types: table
responseName - Name of response variable for classification and regression problems character vector

Name of response variable for classification and regression problems, specified as a character vector that shows the name of the variable containing the responses in tbl.

Data Types: char
responseNames - Names of response variables for regression problems cell array

Names of the response variables for regression problems, specified as a cell array of character vectors that show the names of the variables containing the responses in t.bl.

Data Types: cell

layers - Network layers

Layer array | LayerGraph object
Network layers, specified as a Layer array or a LayerGraph object.
To train a network with all layers connected sequentially, you can use a Layer array as input argument. In this case, the returned trained network is a SeriesNetwork object.

A directed acyclic graph (DAG) network is a network with a more complex structure where layers can have multiple inputs or outputs. To train a DAG network, specify the network architecture as a LayerGraph object and then use that layer graph as input argument to trainNetwork.

options - Training options

TrainingOptionsSGDM object
Training options, specified as a TrainingOptionsSGDM object returned by the trainingOptions function. SGDM stands for the stochastic gradient descent with momentum solver.

Output Arguments

trainedNet - Trained network

SeriesNetwork object | DAGNetwork object
Trained network, returned as a SeriesNetwork object or a DAGNetwork object.
If you train the network using a Layer array as the layers input argument, then trainedNet is a SeriesNetwork object. If you train the network using a LayerGraph object as input argument, then trainedNet is a DAGNetwork object.

traininfo - Training information

structure
Training information for each iteration, returned as a structure with a combination of the following fields.

- TrainingLoss - Loss function value at each iteration
- TrainingAccuracy - Training accuracy at each iteration
- TrainingRMSE - Training RMSE at each iteration
- ValidationLoss - Loss function value for validation data
- ValidationAccuracy - Validation accuracy
- ValidationRMSE - Validation RMSE
- BaseLearnRate - Learning rate at each iteration
trainNetwork returns accuracy values for classification networks, RMSE values for regression networks, and validation metrics when you are validating the network during training. Each field is a numeric vector with one element per training iteration. Values that have not been calculated at a specific iteration are represented by NaN.

Definitions

Save Checkpoint Networks and Resume Training

trainNetwork enables you to save checkpoint networks as .mat files during training.
You can then resume training from any checkpoint network. If you want trainNetwork
to save checkpoint networks, then you must specify the name of the path by using the CheckpointPath name-value pair argument of trainingOptions. If the path you specify is incorrect, then trainingOptions returns an error.
trainNetwork automatically assigns a unique name to each checkpoint network file, for example, convnet_checkpoint__351__2016_11_09__12_04_23.mat. In this example, 351 is the iteration number, $2016 _11 _09$ is the date, and $12 _04 _23$ is the time at which trainNetwork saves the network. You can load a checkpoint network file by double-clicking it or entering the load command at the command line. For example:

```
load convnet_checkpoint__351__2016_11_09__12_04_23.mat
```

You can then resume training by using the layers of this network in the call to trainNetwork. For example:
trainNetwork(Xtrain,Ytrain, net.Layers,options)
You must manually specify the training options and the input data because the checkpoint network does not contain this information.

References

[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-Through Regions." Pattern Recognition Letters. Vol. 20, No. 11-13, pages 1103-1111.
[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https:// archive.ics.uci.edu/ml/datasets/Japanese+Vowels

See Also

DAGNetwork | LayerGraph | SeriesNetwork | classify | predict |
trainingOptions

Topics

"Create Simple Deep Learning Network for Classification"
"Transfer Learning Using AlexNet"
"Classify Sequence Data Using LSTM Networks"
"Deep Learning in MATLAB"
"Define New Deep Learning Layers"

Introduced in R2016a

deepDreamlmage

Visualize network features using deep dream

Syntax

```
I = deepDreamImage(net,layer,channels)
I = deepDreamImage(net,layer,channels,Name,Value)
```


Description

I = deepDreamImage (net,layer, channels) returns an array of images that strongly activate the channels channels within the network net of the layer with numeric index or name given by layer. These images highlight the features learned by a network.

I = deepDreamImage(net,layer, channels,Name,Value) returns an image with additional options specified by one or more Name, Value pair arguments.

Examples

Visualize Convolutional Neural Network Features

Create a simple convolutional neural network and visualize the learned features using deepDreamImage.

Load sample data.

```
[XTrain,TTrain] = digitTrain4DArrayData;
```

Construct a simple network to classify the digit image data.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
```

```
reluLayer
maxPooling2dLayer(2,'Stride',2)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
```


Create training options.

```
options = trainingOptions('sgdm');
```


Train the network.

To produce images that resemble a given digit the most closely, specify the final fully connected layer. View the network layers.

```
net.Layers
ans =
    7x1 Layer array with layers:
```

| 1 | 'imageinput' | Image Input | 28x28x1 images with 'zerocenter' |
| :---: | :---: | :---: | :---: |
| 2 | 'conv' | Convolution | $205 \times 5 \times 1$ convolutions with stride [1 |
| 3 | 'relu' | ReLU | ReLU |
| 4 | 'maxpool' | Max Pooling | 2×2 max pooling with stride [2 2] a |
| 5 | 'fc' | Fully Connected | 10 fully connected layer |
| 6 | 'softmax' | Softmax | softmax |
| 7 | 'classoutput' | Classification Output | crossentropyex with '0', '1', and 8 |

Specify the last fully connected layer.

```
layer = 'fc';
```

Specify first channel to visualize digit 0 .

```
channels = 1;
```

Generate and display image.

```
I = deepDreamImage(net,layer,channels,'Verbose',false);
imshow(I)
```


- "Deep Learning in MATLAB"
- "Pretrained Convolutional Neural Networks"
- "Deep Dream Images Using AlexNet"
- "Visualize Features of a Convolutional Neural Network"
- "Visualize Activations of a Convolutional Neural Network"

Input Arguments

net - Trained network
SeriesNetwork object
Trained network, specified as a SeriesNetwork object. You can get a trained network by importing a pretrained network (for example, by using the alexnet function) or by training your own network using the trainNetwork function.
deepDreamImage does not support input networks that contain recurrent layers (for example, LSTM networks).

layer - Layer index or name

numeric index | character vector
Layer to visualize, specified as a positive integer scalar or character vector. To visualize classification layer features, select the last fully connected layer before the classification layer.

Tip Selecting ReLU or dropout layers for visualization may not produce useful images because of the effect that these layers have on the network gradients.
channels - Channel index
numeric index | vector of numeric indices

Queried channels, specified as scalar or vector of channel indices. If channels is a vector, the layer activations for each channel are optimized independently. The possible choices for channels depend on the selected layer. For convolutional layers, the NumFilters property specifies the number of output channels. For fully connected layers, the OutputSize property specifies the number of output channels.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: deepDreamImage (net, layer, channels, 'NumItetations', 100,'ExecutionEnvironment', 'gpu') generates images using 100 iterations per pyramid level and uses the GPU.

InitialImage - Image to initialize Deep Dream

array
Image to initialize Deep Dream. Use this syntax to see how an image is modified to maximize network layer activations. The minimum height and width of the initial image depend on all the layers up to and including the selected layer:

- For layers towards the end of the network, the initial image must be at least the same height and width as the image input layer.
- For layers towards the beginning of the network, the height and width of the initial image can be smaller than the image input layer. However, it must be large enough to produce a scalar output at the selected layer.
- The number of channels of the initial image must match the number of channels in the image input layer of the network.

If you do not specify an initial image, the software uses a random image with pixels drawn from a standard normal distribution. See also 'PyramidLevels' on page 1-0

PyramidLevels - Number of pyramid levels

3 (default) | positive integer
Number of multi-resolution image pyramid levels to use to generate the output image, specified as a positive integer. Increase the number of pyramid levels to produce larger output images at the expense of additional computation. To produce an image of the same size as the initial image, set the number of levels to 1 .

Example: 'PyramidLevels', 3
PyramidScale - Scale between pyramid levels
1.4 (default) | scalar with value > 1

Scale between each pyramid level, specified as a scalar with value >1. Reduce the pyramid scale to incorporate fine grain details into the output image. Adjusting the pyramid scale can help generate more informative images for layers at the beginning of the network.

Example: 'PyramidScale',1.4

NumIterations - Number of iterations per pyramid level

10 (default) | positive integer
Number of iterations per pyramid level, specified as a positive integer. Increase the number of iterations to produce more detailed images at the expense of additional computation.
Example: 'NumIterations',10

OutputScaling - Type of scaling to apply to output

'linear' (default) | 'none'
Type of scaling to apply to output image, specified as the comma-separated pair consisting of 'OutputScaling' and one of the following:

| Value | Description |
| :--- | :--- |
| 'linear' | Scale output pixel values in the interval
 $[0,1]$. The output image corresponding to
 each layer channel, $I(:,:,:, ~ c h a n n e l), ~ i s ~$
 scaled independently. |
| 'none' | Disable output scaling. |

Example: 'OutputScaling','linear'
Data Types: char

Verbose - Indicator to display progress information
 1 (default) | 0

Indicator to display progress information in the command window, specified as the comma-separated pair consisting of 'Verbose' and either 1 (true) or 0 (false). The displayed information includes the pyramid level, iteration, and the activation strength.
Example: 'Verbose', 0
Data Types: logical

ExecutionEnvironment - Hardware resource

```
'auto'(default) | 'gpu' | 'cpu'
```

Hardware resource, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and one of the following:

- 'auto' - Use a GPU if one is available; otherwise, use the CPU.
- 'gpu' - Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
- 'cpu' - Use the CPU.

Example: 'ExecutionEnvironment','cpu'

Output Arguments

I — Output image

array
Output image, specified by a sequence of grayscale or truecolor (RGB) images stored in a 4-D array. Images are concatenated along the fourth dimension of I such that the image that maximizes the output of channels (k) is $I(:,:,:, k)$. You can display the output image using imshow.

Algorithms

This function implements a version of deep dream that uses a multi-resolution image pyramid and Laplacian Pyramid Gradient Normalization to generate high-resolution images. For more information on Laplacian Pyramid Gradient Normalization, see this blog post: DeepDreaming with TensorFlow.

References

[1] DeepDreaming with TensorFlow. https://github.com/tensorflow/tensorflow/blob/ master/tensorflow/examples/tutorials/deepdream/deepdream.ipynb

See Also
activations | alexnet | vgg16 | vgg19
\section*{Topics}
"Deep Learning in MATLAB"
"Pretrained Convolutional Neural Networks"
"Deep Dream Images Using AlexNet"
"Visualize Features of a Convolutional Neural Network"
"Visualize Activations of a Convolutional Neural Network"
Introduced in R2017a

regressionLayer

Create a regression output layer

Syntax

```
routputlayer = regressionLayer
routputlayer = regressionLayer('Name',Name)
```


Description

routputlayer = regressionLayer returns a regression output layer for a neural network as a RegressionOutputLayer object. For regression problems, you must include a fully connected layer followed by a regression layer at the end of the network. For information on concatenating layers to construct convolutional neural network architecture, see Layer. Predict responses using a trained network using predict.
routputlayer = regressionLayer('Name',Name) returns a regression layer with the name specified by Name.

Examples

Create Regression Output Layer

Create a regression output layer with the name 'routput'.

```
layer = regressionLayer('Name','routput')
layer
    RegressionOutputLayer with properties:
```

 Name: 'routput'
 ResponseNames: \{\}
 Hyperparameters
    ```
LossFunction: 'mean-squared-error'
```

The default loss function for regression is mean-squared-error.
Include a regression output layer in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer (12,25)
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer]
layers =
    5x1 Layer array with layers:
```

1	''	Image Input	$28 \times 28 \times 1$ images with 'zerocenter' normalization
2	''	Convolution	2512×12 convolutions with stride $[1 \quad 1]$ and padding
3	''	ReLU	ReLU
4	''	Fully Connected	1 fully connected layer
5	''	Regression Output	mean-squared-error

- "Deep Learning in MATLAB"
- "Train a Convolutional Neural Network for Regression"

Input Arguments

Name - Layer name

' ' (default) | character vector
Layer name, specified as the comma-separated pair consisting of 'Name' and a character vector. If you do not specify a name, then the software initially specifies the default value ' ', and automatically assigns the name 'regressionoutputlayer' at training time.
Example: 'Name', 'routput'
Data Types: char

Output Arguments

routputlayer - Regression output layer
 RegressionOutputLayer

Regression output layer, returned as a RegressionOutputLayer object.
For information on concatenating layers to construct convolutional neural network architecture, see Layer.

See Also

FullyConnectedLayer \| RegressionOutputLayer | classificationLayer

Topics

"Deep Learning in MATLAB"
"Train a Convolutional Neural Network for Regression"

Introduced in R2017a

alexnet

Pretrained AlexNet convolutional neural network

Syntax

```
net = alexnet
```


Description

net $=$ alexnet returns a pretrained AlexNet model. This model is trained on a subset of the ImageNet database [1], which is used in ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [2]. The model is trained on more than a million images and can classify images into 1000 object categories. For example, keyboard, mouse, pencil, and many animals. As a result, the model has learned rich feature representations for a wide range of images.

This function requires Neural Network Toolbox Model for AlexNet Network support package. If this support package is not installed, the function provides a download link. Alternatively, see Neural Network Toolbox Model for AlexNet Network.

Examples

Download AlexNet Support Package

Download and install Neural Network Toolbox Model for AlexNet Network support package.

Type alexnet at the command line.
alexnet
If Neural Network Toolbox Model for AlexNet Network support package is not installed, then the function provides a link to the required support package in the Add-On

Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by typing alexnet at the command line.

```
alexnet
ans =
    SeriesNetwork with properties:
    Layers: [25\times1 nnet.cnn.layer.Layer]
```

If the required support package is installed, then the function returns a SeriesNetwork object.

Load Pretrained AlexNet Convolutional Neural Network

Load a pretrained AlexNet convolutional neural network and examine the layers and classes.

Load the pretrained AlexNet network using alexnet. The output net is a SeriesNetwork object.

```
net = alexnet
```

net $=$

SeriesNetwork with properties:
Layers: [25×1 nnet.cnn.layer.Layer]

Using the Layers property, view the network architecture. The network comprises of 25 layers. There are 8 layers with learnable weights: 5 convolutional layers, and 3 fully connected layers.

```
net.Layers
ans =
    25x1 Layer array with layers:
```

```
'data' Image Input
'conv1' Convolution
'relu1' ReLU
'norm1' Cross Channel Normalization
'pool1' Max Pooling
'conv2' Convolution
'relu2' ReLU
'norm2' Cross Channel Normalization
'pool2' Max Pooling
'conv3' Convolution
'relu3' ReLU
'conv4' Convolution
'relu4' ReLU
'conv5' Convolution
'relu5' ReLU
'pool5' Max Pooling
'fc6' Fully Connected
'relu6' ReLU
'drop6' Dropout
'fc7' Fully Connected
'relu7' ReLU
'drop7' Dropout
'fc8' Fully Connected
'prob' Softmax
'output' Classification Output
```

```
227x227x3 images with 'zerocenter'
96 11x11x3 convolutions with stride
ReLU
cross channel normalization with 5
3x3 max pooling with stride [2 2] ar
256 5x5x48 convolutions with stride
ReLU
cross channel normalization with 5
3x3 max pooling with stride [2 2] ar
3 8 4 ~ 3 \times 3 \times 2 5 6 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e
ReLU
3 8 4 ~ 3 \times 3 \times 1 9 2 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e
ReLU
2 5 6 ~ 3 x 3 x 1 9 2 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~
ReLU
3x3 max pooling with stride [2 2] ar
4096 fully connected layer
ReLU
50% dropout
4096 fully connected layer
ReLU
50% dropout
1000 fully connected layer
softmax
crossentropyex with 'tench', 'goldfis
```

You can view the names of the classes learned by the network by viewing the ClassNames property of the classification output layer (the final layer). View the first 10 classes by selecting the first 10 elements.

```
net.Layers(end).ClassNames(1:10)
ans =
    1\times10 cell array
    Columns 1 through 4
        'tench' 'goldfish' 'great white shark' 'tiger shark'
    Columns 5 through 9
    'hammerhead' 'electric ray' 'stingray' 'cock' 'hen'
```

```
Column 10
    'ostrich'
```


Classify an Image Using AlexNet

Read, resize, and classify an image using AlexNet. First, load a pretrained AlexNet model.

```
net = alexnet;
```

Read the image using imread.

```
I = imread('peppers.png');
figure
imshow(I)
```


The pretrained model requires the image size to be the same as the input size of the network. Determine the input size of the network using the InputSize property of the first layer of the network.

```
sz = net.Layers(1).InputSize
```

Crop the image to the input size of the network. Alternatively, you can resize the image using imresize (Image Processing Toolbox ${ }^{\mathrm{TM}}$).

I = I(1:sz(1),1:sz(2),1:sz(3));
figure
imshow(I)

Classify the image using classify.
label = classify(net,I)
label = categorical
bell pepper

Show the image and classification result together.
figure
imshow(I)
title(char(label))
bell pepper

Feature Extraction Using AlexNet

This example shows how to extract learned features from a pretrained convolutional neural network, and use those features to train an image classifier. Feature extraction is the easiest and fastest way use the representational power of pretrained deep networks. For example, you can train a support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox ${ }^{\mathrm{TM}}$) on the extracted features.

Load Data

Unzip and load the sample images as an image datastore. imageDatastore automatically labels the images based on folder names and stores the data as an ImageDatastore object. An image datastore lets you store large image data, including data that does not fit in memory. Split the data into 70% training and 30% test data.

```
unzip('MerchData.zip');
images = imageDatastore('MerchData',...
    'IncludeSubfolders',true,...
    'LabelSource','foldernames');
[trainingImages,testImages] = splitEachLabel(images,0.7,'randomized');
```

There are now 55 training images and 20 validation images in this very small data set. Display some sample images.

```
numTrainImages = numel(trainingImages.Labels);
idx = randperm(numTrainImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(trainingImages,idx(i));
    imshow(I)
end
```


Load Pretrained Network

Load a pretrained AlexNet network. If Neural Network Toolbox Model for AlexNet Network is not installed, then the software provides a download link. AlexNet is trained on more than a million images and can classify images into 1000 object categories. For example, keyboard, mouse, pencil, and many animals. As a result, the model has learned rich feature representations for a wide range of images.

```
net = alexnet;
```

Display the network architecture. The network has five convolutional layers and three fully connected layers.

```
net.Layers
```

```
ans =
25x1 Layer array with layers:
'data' Image Input
    'conv1' Convolution
    'relul' ReLU
    'norm1' Cross Channel Normalization
    'pool1' Max Pooling
    'conv2' Convolution
    'relu2' ReLU
    'norm2' Cross Channel Normalization
    'pool2' Max Pooling
    'conv3' Convolution
    'relu3' ReLU
'conv4' Convolution
'relu4' ReLU
    'conv5' Convolution
    'relu5' ReLU
    'pool5' Max Pooling
    'fc6' Fully Connected
    'relu6' ReLU
'drop6' Dropout
'fc7' Fully Connected
    'relu7' ReLU
'drop7' Dropout
'fc8' Fully Connected
    'prob' Softmax
'output' Classification Output
227x227x3 images with 'zerocenter'
96 11x11x3 convolutions with stride
ReLU
cross channel normalization with 5
3x3 max pooling with stride [2 2] a
2 5 6 ~ 5 x 5 x 4 8 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~
ReLU
cross channel normalization with 5
3x3 max pooling with stride [2 2] ar
3 8 4 ~ 3 x 3 x 2 5 6 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~
ReLU
3 8 4 ~ 3 x 3 x 1 9 2 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~
ReLU
2 5 6 ~ 3 x 3 x 1 9 2 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~
ReLU
3x3 max pooling with stride [2 2] ar
4096 fully connected layer
ReLU
50% dropout
4 0 9 6 ~ f u l l y ~ c o n n e c t e d ~ l a y e r ~
ReLU
50% dropout
1000 fully connected layer
softmax
crossentropyex with 'tench', 'goldfis
```

If the training images differ in size from the image input layer, then you must resize or crop the image data. In this example, the images are the same size as the input size of AlexNet, so you do not need to resize or crop the images.

Extract Image Features

The network constructs a hierarchical representation of input images. Deeper layers contain higher-level features, constructed using the lower-level features of earlier layers. To get the feature representations of the training and test images, use activations on the fully connected layer 'fc7'. To get a lower-level representation of the images, use an earlier layer in the network.

```
layer = 'fc7';
trainingFeatures = activations(net,trainingImages,layer);
testFeatures = activations(net,testImages,layer);
```

Extract the class labels from the training and test data.

```
trainingLabels = trainingImages.Labels;
testLabels = testImages.Labels;
```


Fit Image Classifier

Use the features extracted from the training images as predictor variables and fit a multiclass support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox).

```
classifier = fitcecoc(trainingFeatures,trainingLabels);
```


Classify Test Images

Classify the test images using the trained SVM model the features extracted from the test images.

```
predictedLabels = predict(classifier,testFeatures);
```

Display four sample test images with their predicted labels.

```
idx = [1 5 10 15];
figure
for i = 1:numel(idx)
    subplot(2,2,i)
    I = readimage(testImages,idx(i));
    label = predictedLabels(idx(i));
    imshow(I)
    title(char(label))
end
```


Calculate the classification accuracy on the test set. Accuracy is the fraction of labels that the network predicts correctly.

```
accuracy = mean(predictedLabels == testLabels)
accuracy =
```

 1
 This SVM has high accuracy. If the accuracy is not high enough using feature extraction, then try transfer learning instead.

Transfer Learning Using AlexNet

This example shows how to fine-tune a pretrained AlexNet convolutional neural network to perform classification on a new collection of images.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is usually much faster and easier than training a network with randomly initialized weights from scratch. You can quickly transfer learned features to a new task using a smaller number of training images.

Load Data

Unzip and load the new images as an image datastore. imageDatastore automatically labels the images based on folder names and stores the data as an ImageDatastore object. An image datastore enables you to store large image data, including data that does not fit in memory, and efficiently read batches of images during training of a convolutional neural network.

```
unzip('MerchData.zip');
images = imageDatastore('MerchData',...
    'IncludeSubfolders',true,...
    'LabelSource','foldernames');
```

Divide the data into training and validation data sets. Use 70% of the images for training and 30% for validation. splitEachLabel splits the images datastore into two new datastores.

```
[trainingImages,validationImages] = splitEachLabel(images,0.7,'randomized');
```

This very small data set now contains 55 training images and 20 validation images. Display some sample images.

```
numTrainImages = numel(trainingImages.Labels);
idx = randperm(numTrainImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(trainingImages,idx(i));
    imshow(I)
end
```


Load Pretrained Network

Load the pretrained AlexNet neural network. If Neural Network Toolbox ${ }^{\text {TM }}$ Model for AlexNet Network is not installed, then the software provides a download link. AlexNet is trained on more than one million images and can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the model has learned rich feature representations for a wide range of images.

```
net = alexnet;
```

Display the network architecture. The network has five convolutional layers and three fully connected layers.

```
net.Layers
```

25x1 Layer array with layers:

1	'data'	Image Input	$227 \times 227 x 3$ images with 'zerocenter' no
2	'conv1'	Convolution	$9611 \times 11 \times 3$ convolutions with stride
3	'relul'	ReLU	ReLU
4	'norm1'	Cross Channel Normalization	cross channel normalization with 5 ch
5	'pool1'	Max Pooling	3×3 max pooling with stride [2 2] ar
6	'conv2'	Convolution	$2565 \times 5 \times 48$ convolutions with stride
7	'relu2'	ReLU	ReLU
8	'norm2'	Cross Channel Normalization	cross channel normalization with 5 ch
9	'pool2'	Max Pooling	3×3 max pooling with stride [2 2] ar
10	'conv3'	Convolution	384 3x3x256 convolutions with stride
11	'relu3'	ReLU	ReLU
12	'conv4'	Convolution	$3843 \times 3 \times 192$ convolutions with stride
13	'relu4'	ReLU	ReLU
14	'conv5'	Convolution	$2563 \times 3 \times 192$ convolutions with stride
15	'relu5'	ReLU	ReLU
16	'pool5'	Max Pooling	3×3 max pooling with stride [2 2] ar
17	'fc6'	Fully Connected	4096 fully connected layer
18	'relu6'	ReLU	ReLU
19	'drop6'	Dropout	50\% dropout
20	'fc7'	Fully Connected	4096 fully connected layer
21	'relu7'	ReLU	ReLU
22	'drop7'	Dropout	50\% dropout
23	'fc8'	Fully Connected	1000 fully connected layer
24	'prob'	Softmax	softmax
25	'output'	Classification Output	crossentropyex with 'tench', 'goldfis

Transfer Layers to New Network

The last three layers of the pretrained network net are configured for 1000 classes. These three layers must be fine-tuned for the new classification problem. Extract all layers, except the last three, from the pretrained network.

```
layersTransfer = net.Layers(1:end-3);
```

Transfer the layers to the new classification task by replacing the last three layers with a fully connected layer, a softmax layer, and a classification output layer. Specify the options of the new fully connected layer according to the new data. Set the fully connected layer to have the same size as the number of classes in the new data. To learn faster in the new layers than in the transferred layers, increase the

WeightLearnRateFactor and BiasLearnRateFactor values of the fully connected layer.

```
numClasses = numel(categories(trainingImages.Labels))
layers = [
    layersTransfer
    fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20)
    softmaxLayer
    classificationLayer];
```

numClasses =
5

If the training images differ in size from the image input layer, then you must resize or crop the image data. In this example, the images are the same size as the input size of AlexNet, so you do not need to resize or crop the images.

Train Network

Specify the training options. For transfer learning, keep the features from the early layers of the pretrained network (the transferred layer weights). Set InitialLearnRate to a small value to slow down learning in the transferred layers. In the previous step, you increased the learning rate factors for the fully connected layer to speed up learning in the new final layers. This combination of learning rate settings results in fast learning only in the new layers and slower learning in the other layers. When performing transfer learning, you do not need to train for as many epochs. An epoch is a full training cycle on the entire training data set. Specify the mini-batch size and validation data. The software validates the network every ValidationFrequency iterations during training, and automatically stops training if the validation loss stops improving. Validate the network once per epoch.

```
miniBatchSize = 10;
numIterationsPerEpoch = floor(numel(trainingImages.Labels)/miniBatchSize);
options = trainingOptions('sgdm',...
    'MiniBatchSize',miniBatchSize,...
    'MaxEpochs',4,...
    'InitialLearnRate',1e-4,...
    'Verbose',false, ...
    'Plots','training-progress',...
    'ValidationData',validationImages,...
    'ValidationFrequency',numIterationsPerEpoch);
```

Train the network that consists of the transferred and new layers. By default, trainNetwork uses a GPU if one is available (requires Parallel Computing Toolbox ${ }^{\text {TM }}$ and a CUDA-enabled GPU with compute capability 3.0 or higher). Otherwise, it uses a CPU. You can also specify the execution environment by using the
'ExecutionEnvironment' name-value pair argument of trainingOptions.
netTransfer = trainNetwork(trainingImages,layers,options);

Classify Validation Images

Classify the validation images using the fine-tuned network.

```
predictedLabels = classify(netTransfer,validationImages);
```

Display four sample validation images with their predicted labels.

```
idx = [1 5 10 15];
figure
```

```
for i = 1:numel(idx)
    subplot(2,2,i)
    I = readimage(validationImages,idx(i));
    label = predictedLabels(idx(i));
    imshow(I)
    title(char(label))
end
```


MathWorks Cube

MathWorks Playing Cards

MathWorks Screwdriver

Calculate the classification accuracy on the validation set. Accuracy is the fraction of labels that the network predicts correctly.

```
valLabels = validationImages.Labels;
accuracy = mean(predictedLabels == valLabels)
```

```
accuracy =
```

This trained network has high accuracy. If the accuracy is not high enough using transfer learning, then try feature extraction instead.

- "Deep Learning in MATLAB"
- "Pretrained Convolutional Neural Networks"
- "Transfer Learning Using AlexNet"
- "Deep Dream Images Using AlexNet"
- "Visualize Features of a Convolutional Neural Network"
- "Visualize Activations of a Convolutional Neural Network"

Output Arguments

net - Pretrained AlexNet convolutional neural network
SeriesNetwork object
Pretrained AlexNet convolutional neural network returned as a SeriesNetwork object.

References

[1] ImageNet. http://www.image-net.org
[2] Russakovsky, O., Deng, J., Su, H., et al. "ImageNet Large Scale Visual Recognition Challenge." International Journal of Computer Vision (IJCV). Vol 115, Issue 3, 2015, pp. 211-252
[3] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet Classification with Deep Convolutional Neural Networks." Advances in neural information processing systems. 2012.
[4] BVLC AlexNet Model. https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
See AlsodeepDreamImage | googlenet | importCaffeLayers | importCaffeNetwork |vgg16 | vgg19
Topics"Deep Learning in MATLAB""Pretrained Convolutional Neural Networks"
"Transfer Learning Using AlexNet"
"Deep Dream Images Using AlexNet"
"Visualize Features of a Convolutional Neural Network"
"Visualize Activations of a Convolutional Neural Network"
Introduced in R2017a

vgg16

Pretrained VGG-16 convolutional neural network

Syntax

```
net = vgg16
```


Description

net $=$ vgg16 returns a pretrained VGG-16 model. This model is trained on a subset of the ImageNet database [1], which is used in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [2]. VGG-16 is trained on more than a million images and can classify images into 1000 object categories. For example, keyboard, mouse, pencil, and many animals. As a result, the model has learned rich feature representations for a wide range of images.

This function requires Neural Network Toolbox Model for VGG-16 Network support package. If this support package is not installed, then the function provides a download link.

Examples

Download VGG-16 Support Package

Download and install Neural Network Toolbox Model for VGG-16 Network support package.

Type vgg16 at the command line.
vgg16
If Neural Network Toolbox Model for VGG-16 Network support package is not installed, then the function provides a link to the required support package in the Add-On

Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by typing vgg16 at the command line.
vgg16
ans $=$

SeriesNetwork with properties:
Layers: [41×1 nnet.cnn.layer.Layer]

Load Pretrained VGG-16 Convolutional Neural Network

Load a pretrained VGG-16 convolutional neural network and examine the layers and classes.

Use vgg16 to load the pretrained VGG-16 network. The output net is a SeriesNetwork object.

```
net = vgg16
net =
    SeriesNetwork with properties:
        Layers: [41\times1 nnet.cnn.layer.Layer]
```

View the network architecture using the Layers property. The network has 41 layers. There are 16 layers with learnable weights: 13 convolutional layers, and 3 fully connected layers.

```
net.Layers
ans =
    41x1 Layer array with layers:
    'input' Image Input
    'conv1 1' Convolution
    ReLU
```

```
224\times224x3 images with 'zerocenter' normali
6 4 ~ 3 x 3 x 3 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~ [ 1 ~ 1 ] ~ ]
ReLU
```

```
'conv1 2' Convolution
'relu1 2' ReLU
'pool1' Max Pooling
'conv2_1' Convolution
'relu2_1' ReLU
'conv2_2' Convolution
'relu2_2' ReLU
'pool2' Max Pooling
'conv3_1' Convolution
'relu3_1' ReLU
'conv3-2' Convolution
'relu3_2' ReLU
'conv3_3' Convolution
'relu3_3' ReLU
'pool3' Max Pooling
'conv4_1' Convolution
'relu4_1' ReLU
'conv4_2' Convolution
'relu4 2' ReLU
'conv4-3' Convolution
'relu4 3' ReLU
'pool4' Max Pooling
'conv5_1' Convolution
'relu5_1' ReLU
'conv5_2' Convolution
'relu5_2' ReLU
'conv5_3' Convolution
'relu5 3' ReLU
'pool5' Max Pooling
'fc6' Fully Connected
'relu6' ReLU
'drop6' Dropout
'fc7' Fully Connected
'relu7' ReLU
'drop7' Dropout
'fc8' Fully Connected
'prob' Softmax
'output' Classification Output
6 4 ~ 3 \times 3 \times 6 4 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~ [ 1 ~ 1 ] ~
ReLU
2x2 max pooling with stride [2 2] and pac
128 3x3\times64 convolutions with stride [1 1]
ReLU
128 3x3x128 convolutions with stride [1
ReLU
2x2 max pooling with stride [2 2] and pac
256 3x3x128 convolutions with stride [1
ReLU
256 3x3x256 convolutions with stride [1
ReLU
256 3x3x256 convolutions with stride [1
ReLU
2x2 max pooling with stride [2 2] and pac
512 3x3x256 convolutions with stride [1
ReLU
5 1 2 ~ 3 x 3 x 5 1 2 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~ [ 1 ]
ReLU
5 1 2 ~ 3 \times 3 \times 5 1 2 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~ [ 1 ~
ReLU
2x2 max pooling with stride [2 2] and pac
5 1 2 ~ 3 \times 3 \times 5 1 2 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~ [ 1 ]
ReLU
5 1 2 ~ 3 \times 3 \times 5 1 2 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~ [ 1 ]
ReLU
512 3x3x512 convolutions with stride [1
ReLU
2x2 max pooling with stride [2 2] and pac
4 0 9 6 ~ f u l l y ~ c o n n e c t e d ~ l a y e r ~
ReLU
50% dropout
4096 fully connected layer
ReLU
50% dropout
1000 fully connected layer
softmax
crossentropyex with 'tench', 'goldfish',
```

To view the names of the classes learned by the network, you can view the ClassNames property of the classification output layer (the final layer). View the first 10 classes by specifying the first 10 elements.

```
net.Layers(end).ClassNames(1:10)
```

```
ans =
    10\times1 cell array
    'tench'
    'goldfish'
    'great white shark'
    'tiger shark'
    'hammerhead'
    'electric ray'
    'stingray'
    'cock'
    'hen'
    'ostrich'
```

- "Deep Learning in MATLAB"
- "Pretrained Convolutional Neural Networks"
- "Transfer Learning Using AlexNet"
- "Visualize Activations of a Convolutional Neural Network"

Output Arguments

net - Pretrained VGG-16 convolutional neural network
SeriesNetwork object
Pretrained VGG-16 convolutional neural network returned as a SeriesNetwork object.

References

[1] ImageNet. http://www.image-net.org
[2] Russakovsky, O., Deng, J., Su, H., et al. "ImageNet Large Scale Visual Recognition Challenge." International Journal of Computer Vision (IJCV). Vol 115, Issue 3, 2015, pp. 211-252
[3] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
[4] Very Deep Convolutional Networks for Large-Scale Visual Recognition http:// www.robots.ox.ac.uk/~vgg/research/very_deep/

See Also

alexnet \| googlenet \| importCaffeLayers | importCaffeNetwork | vgg19

Topics

"Deep Learning in MATLAB"
"Pretrained Convolutional Neural Networks"
"Transfer Learning Using AlexNet"
"Visualize Activations of a Convolutional Neural Network"

Introduced in R2017a

vgg19

Pretrained VGG-19 convolutional neural network

Syntax

```
net = vgg19
```


Description

net $=$ vgg19 returns a pretrained VGG-19 model. This model is trained on a subset of the ImageNet database [1], which is used in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [2]. VGG-19 is trained on more than a million images and can classify images into 1000 object categories. For example, keyboard, mouse, pencil, and many animals. As a result, the model has learned rich feature representations for a wide range of images.

This function requires Neural Network Toolbox Model for VGG-19 Network support package. If this support package is not installed, then the function provides a download link.

Examples

Download VGG-19 Support Package

This example shows how to download and install Neural Network Toolbox Model for $V G G-19$ Network support package.

Type vgg19 at the command line.
vgg19
If Neural Network Toolbox Model for VGG-19 Network support package is not installed, then the function provides a link to the required support package in the Add-On

Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by typing vgg19 at the command line.

```
vgg19
```

ans $=$
SeriesNetwork with properties:
Layers: [47×1 nnet.cnn.layer.Layer]

Load Pretrained VGG-19 Convolutional Neural Network

Load a pretrained VGG-19 convolutional neural network and examine the layers and classes.

Use vgg19 to load a pretrained VGG-19 network. The output net is a SeriesNetwork object.

```
net = vgg19
net =
    SeriesNetwork with properties:
    Layers: [47\times1 nnet.cnn.layer.Layer]
```

View the network architecture using the Layers property. The network has 47 layers. There are 19 layers with learnable weights: 16 convolutional layers, and 3 fully connected layers.

```
net.Layers
ans =
    47x1 Layer array with layers:
    'input' Image Input
    'conv1_1' Convolution
    ReLU
```

```
224\times224\times3 images with 'zerocenter' normali
```



```
ReLU
```

'conv1 2'
'relu1_2'
Convolution
'pool1'
ReLU
'conv2_1' Convolution
'relu2_1' ReLU
'conv2_2' Convolution
'relu2_2' ReLU
'pool2'
(1)
'conv3_1' Convolution
'relu3_1' ReLU
'conv3_2' Convolution
'relu3_2' ReLU
'conv3_3' Convolution
'relu3_3' ReLU
'conv3_4' Convolution
'relu3_4' ReLU
'pool3'
Max Pooling
conv4_1' Convolution
'relu4_1' ReLU
'conv4_2' Convolution
'relu4_2' ReLU
'conv4_3' Convolution
'relu4 3' ReLU
'conv4_4' Convolution
'relu4_4' ReLU
'pool4'
'conv5_1' Convolution
'relu5_1' ReLU
'conv5_2' Convolution
'relu5_2' ReLU
'conv5_3' Convolution
'relu5_3' ReLU
'conv5_4' Convolution
'relu5_4' ReLU
'pool5' Max Pooling
'fc6' Fully Connected
'relu6' ReLU
'drop6' Dropout
' fc 7'
'relu7'
'drop7'
'fc8'
'prob'
'output'

Fully Connected
ReLU
Dropout
Fully Connected
Softmax
Classification Output

64 3x3x64 convolutions with stride [1 1] ReLU
$2 x 2$ max pooling with stride $\left[\begin{array}{ll}2 & 2\end{array}\right]$ and pad
$1283 \times 3 \times 64$ convolutions with stride [11]
ReLU
$1283 \times 3 \times 128$ convolutions with stride [1
ReLU
$2 x 2$ max pooling with stride $\left[\begin{array}{ll}2 & 2\end{array}\right]$ and pac $2563 \times 3 \times 128$ convolutions with stride [1
ReLU
$2563 \times 3 \times 256$ convolutions with stride [1 ReLU
$2563 \times 3 \times 256$ convolutions with stride [1
ReLU
$2563 \times 3 \times 256$ convolutions with stride [1
ReLU
2×2 max pooling with stride $\left[\begin{array}{ll}2 & 2\end{array}\right]$ and pad
512 3x3x256 convolutions with stride [1
ReLU
$5123 \times 3 \times 512$ convolutions with stride [1 ReLU
$5123 \times 3 \times 512$ convolutions with stride [1
ReLU
512 3x3x512 convolutions with stride [1 ReLU
$2 x 2$ max pooling with stride $\left[\begin{array}{ll}2 & 2\end{array}\right]$ and pac $5123 \times 3 \times 512$ convolutions with stride [1 ReLU
$5123 \times 3 \times 512$ convolutions with stride [1 ReLU
$5123 \times 3 \times 512$ convolutions with stride [1 ReLU
$5123 \times 3 \times 512$ convolutions with stride [1
ReLU
$2 x 2$ max pooling with stride $\left[\begin{array}{ll}2 & 2\end{array}\right]$ and pad
4096 fully connected layer
ReLU
50\% dropout
4096 fully connected layer ReLU
50\% dropout
1000 fully connected layer softmax
crossentropyex with 'tench', 'goldfish',

To view the names of the classes learned by the network, you can view the ClassNames property of the classification output layer (the final layer). View the first 10 classes by specifying the first 10 elements.

```
net.Layers(end).ClassNames(1:10)
ans =
    10\times1 cell array
    'tench'
    'goldfish'
    'great white shark'
    'tiger shark'
    'hammerhead'
    'electric ray'
    'stingray'
    'cock'
    'hen'
    'ostrich'
```

- "Deep Learning in MATLAB"
- "Pretrained Convolutional Neural Networks"
- "Transfer Learning Using AlexNet"
- "Visualize Activations of a Convolutional Neural Network"

Output Arguments

net - Pretrained VGG-19 convolutional neural network
SeriesNetwork object
Pretrained VGG-19 convolutional neural network returned as a SeriesNetwork object.

References

[1] ImageNet. http://www.image-net.org
[2] Russakovsky, O., Deng, J., Su, H., et al. "ImageNet Large Scale Visual Recognition Challenge." International Journal of Computer Vision (IJCV). Vol 115, Issue 3, 2015, pp. 211-252
[3] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
[4] Very Deep Convolutional Networks for Large-Scale Visual Recognition http:// www.robots.ox.ac.uk/~vgg/research/very_deep/

See Also
alexnet | deepDreamImage | googlenet | importCaffeLayers | importCaffeNetwork | vgg16

Topics

"Deep Learning in MATLAB"
"Pretrained Convolutional Neural Networks"
"Transfer Learning Using AlexNet"
"Visualize Activations of a Convolutional Neural Network"

Introduced in R2017a

importCaffeLayers

Import convolutional neural network layers from Caffe

Syntax

```
layers = importCaffeLayers(protofile)
layers = importCaffeLayers(protofile,'InputSize',sz)
```


Description

layers = importCaffeLayers(protofile) imports the layers of a network from Caffe [1] as a Layer array. The function returns the layers defined in the .prototxt given by the file name protofile.

This function requires Neural Network Toolbox Importer for Caffe Models support package. If this support package is not installed, then the function provides a download link.

You can download pretrained networks from Caffe Model Zoo [2].
layers = importCaffeLayers(protofile,'InputSize',sz) specifies the size of the input data. If the .prototxt file does not specify the size of the input data, then you must specify the input size.

Examples

Download Importer for Caffe Models Support Package

Download and install Neural Network Toolbox Importer for Caffe Models support package.

Download the required support package by typing importCaffeLayers at the command line.

importCaffeLayers

If Neural Network Toolbox Importer for Caffe Models support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install.

Import Layers from Caffe Network

Specify the example file 'digitsnet.prototxt' to import.

```
protofile = 'digitsnet.prototxt';
```

Import the network layers.

```
layers = importCaffeLayers(protofile)
layers =
    1x7 Layer array with layers:
\begin{tabular}{|c|c|c|c|}
\hline 1 & 'testdata' & Image Input & 28x28x1 images \\
\hline 2 & 'conv1' & Convolution & \(205 \times 5 \times 1\) convolutions with stride [1 1] \\
\hline 3 & 'relul' & ReLU & ReLU \\
\hline 4 & 'pool1' & Max Pooling & 2 x 2 max pooling with stride [2 2] and \\
\hline 5 & 'ip1' & Fully Connected & 10 fully connected layer \\
\hline 6 & 'loss' & Softmax & softmax \\
\hline 7 & 'output' & Classification Output & crossentropyex with 'class1', 'class2', \\
\hline
\end{tabular}
```

- "Deep Learning in MATLAB"
- "Pretrained Convolutional Neural Networks"

Input Arguments

protofile - File name

character vector
File name of the . prototxt file containing the network architecture, specified as a character vector. protofile must be in the current folder, in a folder on the MATLAB path, or you must include a full or relative path to the file. If the . prototxt file does not specify the size of the input data, you must specify the size using the sz input argument.
importCaffeLayers can import only the layers of a series network with the following Caffe layer types:

- Input
- Data
- Convolution
- ReLU
- Local Response Normalization (LRN)
- Pooling
- Inner Product
- Dropout
- Softmax With Loss
- Euclidean Loss

If the network contains any other type of layer, then the software returns an error.
The function imports only the layers that protofile specifies with the include-phase TEST. The function ignores any layers that protofile specifies with the include-phase TRAIN.

Example: 'digitsnet.prototxt'
Data Types: char

sz - Size of input data

row vector
Size of input data, specified as a row vector. Specify a vector of two or three integer values [h, w], or [h, w, c] corresponding to the height, width, and the number of channels of the input data.
Example: [28 28 1]
Data Types: double

Output Arguments

layers - Network architecture

layer array

Network architecture, returned as a Layer array. Caffe networks that classify truecolor images expect a BGR image input. When imported into MATLAB, the image input layer expects an RGB image input

References

[1] Caffe. http://caffe.berkeleyvision.org/
[2] Caffe Model Zoo. http://caffe.berkeleyvision.org/model_zoo.html

See Also

alexnet | googlenet | importCaffeNetwork | vgg16| vgg19

Topics

"Deep Learning in MATLAB"
"Pretrained Convolutional Neural Networks"

Introduced in R2017a

importCaffeNetwork

Import pretrained convolutional neural network models from Caffe

```
Syntax
net = importCaffeNetwork(protofile,datafile)
net = importCaffeNetwork(protofile,datafile,'InputSize',sz)
net = importCaffeNetwork(
```

\qquad

``` , Name, Value)
```


Description

net = importCaffeNetwork(protofile,datafile) imports a pretrained network from Caffe [1] as a SeriesNetwork object. The function returns the pretrained network with the architecture specified by the .prototxt file protofile and with network weights specified by the . caffemodel file datafile.

This function requires Neural Network Toolbox Importer for Caffe Models support package. If this support package is not installed, the function provides a download link.

You can download pretrained networks from Caffe Model Zoo [2].
net $=$ importCaffeNetwork(protofile,datafile,'InputSize',sz) returns a pretrained network and specifies the size of the input data. If the .prototxt file does not specify the size of the input data, you must specify the input size.
net $=$ importCaffeNetwork(\qquad , Name, Value) returns a network with additional options specified by one or more Name, Value pair arguments using any of the previous syntaxes.

Examples

Download Importer for Caffe Models Support Package

Download and install Neural Network Toolbox Importer for Caffe Models support package.

To download the required support package, type importCaffeNetwork at the command line.

```
importCaffeNetwork
```

If Neural Network Toolbox Importer for Caffe Models support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install.

Import Caffe Network

Specify files to import.

```
protofile = 'digitsnet.prototxt';
datafile = 'digits_iter_10000.caffemodel';
```

Import network.

```
net = importCaffeNetwork(protofile,datafile)
net =
```

 SeriesNetwork with properties:
 Layers: [7×1 nnet.cnn.layer.Layer]
 - "Deep Learning in MATLAB"
- "Pretrained Convolutional Neural Networks"

Input Arguments

protofile - File name

character vector

File name of the . prototxt file containing the network architecture, specified as a character vector. protofile must be in the current folder, in a folder on the MATLAB path, or you must include a full or relative path to the file.

If the .prototxt file does not specify the size of the input data, you must specify the size using the sz input argument.
importCaffeNetwork can import only a series network with the following Caffe layer types:

- Input
- Data
- Convolution
- ReLU
- Local Response Normalization (LRN)
- Pooling
- Inner Product
- Dropout
- Softmax With Loss
- Euclidean Loss

If the network contains any other type of layer, then the software returns an error.
The function imports only the layers that protofile specifies with the include-phase TEST. The function ignores any layers that protofile specifies with the include-phase TRAIN.

The software cannot import a solver definition.
Example: 'digitsnet.prototxt'
Data Types: char
datafile - File name
character vector
File name of the .caffemodel file containing the network weights, specified as a character vector. datafile must be in the current folder, in a folder on the MATLAB
path, or you must include a full or relative path to the file. To import network layers without weights, see importCaffeLayers.

```
Example:'digits_iter_10000.caffemodel'
```

Data Types: char

sz - Size of input data

row vector
Size of input data, specified as a row vector. Specify a vector of two or three integer values [h, w], or [$\mathrm{h}, \mathrm{w}, \mathrm{c}$] corresponding to the height, width, and the number of channels of the input data.
Example: [28 28 1]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example:
importCaffeNetwork(protofile,datafile,'AverageImage',I,'ClassNames', \{'A','B','C'\}) imports a pretrained network using the average image I for zerocenter normalization and specifies the class names to be 'A', 'B', and 'C'.

AverageImage - Average image

matrix
Average image for zero-center normalization, specified as a matrix. If you specify an image, then you must specify an image of the same size as the input data. If you do not specify an image, the software uses the data specified in the . prototxt file, if present. Otherwise, the function sets the Normalization property of the image input layer of the network to 'none'.

Data Types: single

ClassNames - Class names

cell array of character vectors

Class names associated with the output layer of the network, specified by a cell array of character vectors.

Example: \{'0','1','2','3','4','5','6','7','8','9'\}
Data Types: cell

Output Arguments

net - Imported pretrained Caffe network
series network object
Imported pretrained Caffe network, returned as a SeriesNetwork object. Caffe networks that classify truecolor images expect a BGR image input. When imported into MATLAB, the image input layer expects an RGB image input.

References

[1] Caffe. http://caffe.berkeleyvision.org/
[2] Caffe Model Zoo. http://caffe.berkeleyvision.org/model_zoo.html

See Also

alexnet | googlenet | importCaffeLayers | vgg16| vgg19

Topics

"Deep Learning in MATLAB"
"Pretrained Convolutional Neural Networks"

Introduced in R2017a

augmentedlmageSource

Generate batches of augmented image data

Description

An augmented image source generates batches of new images, with optional preprocessing such as resizing, rotation, and reflection, based on the training images. Augmenting image data helps prevent the network from overfitting and memorizing the exact details of the training images. It also increases the effective size of the training data set.

You can configure options for image preprocessing using an imageDataAugmenter. To train a network using augmented images, supply the augmentedImageSource to trainNetwork. For more information, see "Preprocess Images for Deep Learning".

Creation

Syntax

```
imagesource = augmentedImageSource(outputSize,imds)
imagesource = augmentedImageSource(outputSize,X,Y)
imagesource = augmentedImageSource(outputSize,tbl)
imagesource = augmentedImageSource(outputSize,tbl,responseName)
imagesource = augmentedImageSource(outputSize,tbl,responseNames)
imagesource = augmentedImageSource(
```

\qquad

``` , Name, Value)
```


Description

imagesource $=$ augmentedImageSource (outputSize,imds) creates an augmented image source for classification problems using images from image datastore imds, and sets the OutputSize on page 1-0 property.
imagesource $=$ augmentedImageSource (outputSize, X,Y) creates an augmented image source for classification and regression problems. The array X contains the predictor variables and the array Y contains the categorical labels or numeric responses.
imagesource $=$ augmentedImageSource (outputSize,tbl) creates an augmented image source for classification and regression problems. The table, tbl, contains predictors and responses.
imagesource $=$ augmentedImageSource (outputSize,tbl,responseName) creates an augmented image source for classification and regression problems. The table, tbl, contains predictors and responses. The responseName argument specifies the response variable in t.bl.
imagesource = augmentedImageSource(outputSize,tbl,responseNames) creates an augmented image source for multi-output regression problems. The table, t.bl, contains predictors and responses. The responseNames argument specifies the response variables in tbl.
imagesource $=$ augmentedImageSource(\qquad , Name, Value) creates an augmented image source, using name-value pairs to configure the image preprocessing done by the image source. Use name-value pairs to set the ColorPreprocessing on page 10 , DataAugmentation on page 1-0 , and OutputSizeMode on page 10 properties and the BackgroundExecution on page 1-0 value. You can specify multiple name-value pairs. Enclose each property name in quotes.

For example, augmentedImageSource ([28,28],myTable,'OutputSizeMode','centercrop') creates an augmented image source that sets the OutputSizeMode property to crop images from the center.

Input Arguments

imds — Images with labels

ImageDatastore object
Images with labels, specified as an ImageDatastore object with categorical labels. You can store data in ImageDatastore for only image classification networks.

ImageDatastore allows batch-reading of JPG or PNG image files using pre-fetching. If you use a custom function for reading the images, pre-fetching does not happen.

x - Images

4-D numeric array
Images, specified as a 4-D numeric array. The first three dimensions must be the height, width, and channels, and the last dimension must index the individual images.

If the array contains NaNs, then they are propagated through the training, however, in most cases the training fails to converge.

Data Types: single | double

Y — Responses for classification or regression

array of categorical responses | numeric matrix | 4-D numeric array
Responses for classification or regression, specified as one of the following:

- For a classification problem, Y is a categorical vector containing the image labels.
- For a regression problem, Y can be an:
- n-by- r numeric matrix. n is the number of observations and r is the number of responses.
- h-by- w-by-c-by- n numeric array. h-by- w-by- c is the size of a single response and n is the number of observations.

Responses must not contain NaNs.
Data Types: categorical | double

tbl - Input data

table
Input data, specified as a table. tbl must contain the predictors in the first column as either absolute or relative image paths or images. The type and location of the responses depend on the problem:

- For a classification problem, the response must be a categorical variable containing labels for the images. If the name of the response variable is not specified in the call to augmentedImageSource, the responses must be in the second column. If the responses are in a different column of tbl, then you must specify the response variable name using the responseName positional argument.
- For a regression problem, the responses must be numerical values in the column or columns after the first one. The responses can be either in multiple columns as
scalars or in a single column as numeric vectors or cell arrays containing numeric 3-D arrays. When you do not specify the name of the response variable or variables, augmentedImageSource accepts the remaining columns of tbl as the response variables. You can specify the response variable names using the responseName positional argument.

Responses must not contain NaNs. If there are NaNs in the predictor data, they are propagated through the training, however, in most cases the training fails to converge.

Data Types: table

responseName - Name of response variable for classification and regression problems

 character vectorName of response variable for classification and regression problems, specified as a character vector that shows the name of the variable containing the responses in tbl.

Data Types: char

```
responseNames - Names of response variables for regression problems
cell array
```

Names of the response variables for regression problems, specified as a cell array of character vectors that show the names of the variables containing the responses in tbl.

Data Types: cell

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: mbds =
augmentedImageSource([28,28],myTable,'BackgroundExecution',true);

BackgroundExecution - Perform augmentation in parallel false (default) | true

Perform augmentation in parallel, specified as false or true. If
'BackgroundExecution' is true, and you have Parallel Computing Toolbox software installed, then augmentedImageSource performs image augmentation in parallel.

Note You cannot augment images in parallel and train a network in parallel at the same time. If you set 'BackgroundExecution' to true, then you must set the 'ExecutionEnvironment' of trainingOptions to 'auto', 'cpu', or 'gpu'.

Properties

ColorPreprocessing - Preprocessing color operations

'none' (default) | 'gray2rgb' | 'rgb2gray'
Preprocessing operations performed on color channels of input images, specified as 'none', 'gray2rgb', or 'rgb2gray'. ColorPreprocessing ensures that all output images from the datasource have the number of color channels required by inputImageLayer.

If an input image already has the required number of color channels, no operation is performed. For example, if 'gray 2 rgb ' is specified and an input image already has three channels, no color preprocessesing occurs.

Data Types: char | string

DataAugmentation - Preprocessing applied to input images

'none' (default) | imageDataAugmenter object
Preprocessing applied to input images, specified as an imageDataAugmenter object or 'none'. When DataAugmentation is 'none', no preprocessing is applied to input images.

OutputSize - Size of output images

vector of two positive integers
Size of output images, specified as a vector of two positive integers. The first element specifies the number of rows in the output images, and the second element specifies the number of columns.

OutputSizeMode - Method used to resize output images
 'resize' (default)| 'centercrop' | 'randcrop'

Method used to resize output images, specified as one of the following.

- 'resize' - Scale the image to fit the output size. For more information, see imresize.
- 'centercrop' - Take a crop from the center of the training image. The crop has the same size as the output size.
- 'randcrop' - Take a random crop from the training image. The random crop has the same size as the output size.

Data Types: char \| string

Examples

Train Convolutional Neural Network with Rotational Invariance

Preprocess images using random rotation so that the trained convolutional neural network has rotational invariance.

Load the sample data, which consists of synthetic images of handwritten numbers.

```
[XTrain,YTrain] = digitTrain4DArrayData;
```

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-by-5000 array, where:

- 28 is the height and width of the images.
- 1 is the number of channels
- 5000 is the number of synthetic images of handwritten digits.

TTrain is a categorical vector containing the labels for each observation.
Create an image augmenter that rotates images during training. This image augmenter rotates each image by a random angle.

```
imageAugmenter = imageDataAugmenter('RandRotation',[-180 180])
imageAugmenter =
    imageDataAugmenter with properties:
            FillValue: 0
            RandXReflection: 0
            RandYReflection: 0
            RandRotation: [-180 180]
            RandXScale: [1 1]
```

```
    RandYScale: [1 1]
    RandXShear: [0 0}
    RandYShear: [0 0}
RandXTranslation: [0 0]
RandYTranslation: [0 0]
```

Specify the size of augmented images. Create an augmented image source, and associate the source with the image augmenter.

```
imageSize = [28 28 1];
datasource = augmentedImageSource(imageSize,XTrain,YTrain,'DataAugmentation',imageAugme
datasource =
    augmentedImageSource with properties:
            DataAugmentation: [1x1 imageDataAugmenter]
        ColorPreprocessing: 'none'
            OutputSize: [28 28]
            OutputSizeMode: 'resize'
```

Specify the convolutional neural network architecture.

```
layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,16,'Padding',1)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32,'Padding',1)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,64,'Padding',1)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
```

```
softmaxLayer
classificationLayer];
```

Set the training options for stochastic gradient descent with momentum.

```
opts = trainingOptions('sgdm', ...
    'MaxEpochs',10, ...
    'Shuffle','every-epoch', ...
    'InitialLearnRate',1e-3);
```

Train the network.
net $=$ trainNetwork(datasource,layers,opts);
Training on single CPU.
Initializing image normalization.

See Also

imageDataAugmenter \| imageInputLayer \| trainNetwork

Topics

"Deep Learning in MATLAB"
"Preprocess Images for Deep Learning"

Introduced in R2017b

imageDataAugmenter

Configure image data augmentation

Description

An image data augmenter configures a set of preprocessing options for image augmentation, such as resizing, rotation, and reflection.

Creation

Syntax

```
aug = imageDataAugmenter
aug = imageDataAugmenter(Name,Value)
```


Description

aug = imageDataAugmenter creates an imageDataAugmenter object with default property values consistent with the identity transformation.
aug $=$ imageDataAugmenter (Name, Value) configures a set of image augmentation options using name-value pairs to set properties on page 1-746. You can specify multiple name-value pairs. Enclose each property name in quotes.

Properties

FillValue - Fill value
numeric scalar or vector
Fill value used to define out-of-bounds points when resampling, specified as a numeric scalar or vector.

- If the augmented images are single channel, then FillValue must be scalar.
- If the augmented images are multichannel, then FillValue can be a scalar or a vector with length equal to the number of channels of the input image. For example, if the input image is an RGB image, FillValue can be a vector of length 3.

Example: 128

RandRotation - Range of rotation

[0 0] (default) | 2 -element numeric vector

Range of rotation applied to the input image, specified as a 2 -element numeric vector. The second element must be larger than or equal to the first element.

Each image is rotated by an amount, in degrees, picked randomly from within the range. By default, augmented images are not rotated.

Example: [0 360]

RandXReflection - Random reflection

false (default) | true
Random reflection in the left-right direction, specified as a logical scalar. When RandXReflection is true (1), each image is reflected horizontally with 50% probability. When RandXReflection is false (0), no images are reflected.

RandYReflection - Random reflection

false (default) | true
Random reflection in the top-bottom direction, specified as a logical scalar. When RandYReflection is true (1), each image is reflected vertically with 50% probability. When RandYReflection is false (0), no images are reflected.

RandXScale - Range of horizontal scale

[1 1] (default) | 2 -element vector of positive numbers
Range of horizontal scale applied to the input image, specified as a 2 -element vector of positive numbers. The second element must be larger than or equal to the first element.

Each image is scaled by a factor picked randomly from a uniform distribution within the range. By default, augmented images are not scaled in the horizontal direction.

Example: [0.5 4]

RandYScale - Range of vertical scale

[1 1] (default) | 2 -element vector of positive numbers

Range of vertical scale applied to the input image, specified as a 2 -element vector of positive numbers. The second element must be larger than or equal to the first element.

Each image is scaled by a factor picked randomly from a uniform distribution within the range. By default, augmented images are not scaled in the vertical direction.

Example: [0.54]

RandXShear - Range of horizontal shear

[0 0] (default) | 2 -element numeric vector

Range of horizontal shear applied to the input image, specified as a 2 -element numeric vector with values in the range ($-90,90$). The second element must be larger than or equal to the first element. The elements in the vector represent shear angles, measured in units of degrees.

Each augmented image is sheared by a factor picked randomly from a uniform distribution within the range. By default, augmented images are not sheared in the horizontal direction.

Example: [0 45]

RandYShear - Range of vertical shear

[0 0] (default) | 2 -element numeric vector
Range of vertical shear applied to the input image, specified as a 2 -element numeric vector with values in the range $(-90,90)$. The second element must be larger than or equal to the first element. The elements in the vector represent shear angles, measured in units of degrees.

Each augmented image is sheared by a factor picked randomly from a uniform distribution within the range. By default, augmented images are not sheared in the vertical direction.

Example: [0 45]

RandXTranslation - Range of horizontal translation

[0 0] (default) | 2 -element numeric vector

Range of horizontal translation applied to the input image, specified as a 2 -element numeric vector. The second element must be larger than or equal to the first element.

Each augmented image is translated by a distance, in pixels, picked randomly from a uniform distribution within the range. By default, augmented images are not translated in the horizontal direction.

Example: [0 10]

RandYTranslation - Range of vertical translation

[0 0] (default) | 2 -element numeric vector

Range of vertical translation applied to the input image, specified as a 2 -element numeric vector. The second element must be larger than or equal to the first element.

Each augmented image is translated by a distance, in pixels, picked randomly from a uniform distribution within the range. By default, augmented images are not translated in the vertical direction.

Example: [0 10]

Examples

Create Image Data Augmenter to Resize and Reflect Images

Create an image augmenter that preprocesses images before training. This augmenter resizes and reflects images at random.

```
augmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXScale',[1 2], ...
    'RandYReflection',true, ...
    'RandYScale',[1 2])
augmenter =
    imageDataAugmenter with properties:
            FillValue: 0
        RandXReflection: 1
        RandYReflection: 1
            RandRotation: [0 0]
```

RandXScale: [1 2]
RandYScale: [1 2]
RandXShear: [0 0 $]$
RandYShear: [0 0 $]$
RandXTranslation: [0 0]
RandYTranslation: [0 0]

Include the image augmenter in an augmented image source. The image source also requires sample data, classifications, and an output image size.

```
[XTrain,YTrain] = digitTrain4DArrayData;
imageSize = [28 28 1];
source = augmentedImageSource(imageSize,XTrain,YTrain,'DataAugmentation',augmenter)
source =
    augmentedImageSource with properties:
        DataAugmentation: [1x1 imageDataAugmenter]
        ColorPreprocessing: 'none'
            OutputSize: [28 28]
            OutputSizeMode: 'resize'
```


Train Convolutional Neural Network with Rotational Invariance

Preprocess images using random rotation so that the trained convolutional neural network has rotational invariance.

Load the sample data, which consists of synthetic images of handwritten numbers.
[XTrain,YTrain] = digitTrain4DArrayData;
digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-by-5000 array, where:

- 28 is the height and width of the images.
- 1 is the number of channels
- 5000 is the number of synthetic images of handwritten digits.

TTrain is a categorical vector containing the labels for each observation.

Create an image augmenter that rotates images during training. This image augmenter rotates each image by a random angle.

```
imageAugmenter = imageDataAugmenter('RandRotation',[-180 180])
imageAugmenter =
    imageDataAugmenter with properties:
            FillValue: 0
        RandXReflection: 0
        RandYReflection: 0
            RandRotation: [-180 180]
            RandXScale: [1 1]
            RandYScale: [1 1]
            RandXShear: [0 0]
            RandYShear: [0 0]
        RandXTranslation: [0 0]
        RandYTranslation: [0 0]
```

Specify the size of augmented images. Create an augmented image source, and associate the source with the image augmenter.

```
imageSize = [28 28 1];
datasource = augmentedImageSource(imageSize,XTrain,YTrain,'DataAugmentation',imageAugme
datasource =
    augmentedImageSource with properties:
            DataAugmentation: [1x1 imageDataAugmenter]
        ColorPreprocessing: 'none'
            OutputSize: [28 28]
            OutputSizeMode: 'resize'
```

Specify the convolutional neural network architecture.

```
layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,16,'Padding',1)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
```

```
convolution2dLayer(3,32,'Padding',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,64,'Padding',1)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
```

Set the training options for stochastic gradient descent with momentum.

```
opts = trainingOptions('sgdm', ...
    'MaxEpochs',10, ...
    'Shuffle','every-epoch', ...
    'InitialLearnRate',1e-3);
```


Train the network.

```
net = trainNetwork(datasource,layers,opts);
Training on single CPU.
Initializing image normalization.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Epoch & Iteration & Time Elapsed (seconds) & Mini-batch Loss & Mini-batch Accuracy & Base Learr Rate \\
\hline 1 & 1 & 0.69 & 2.3988 & 13.28\% & 0.00 \\
\hline 2 & 50 & 30.93 & 1.4635 & 57.81\% & 0.00 \\
\hline 3 & 100 & 62.76 & 1.0597 & 72.66\% & 0.00 \\
\hline 4 & 150 & 95.17 & 0.8351 & 71.88\% & 0.00 \\
\hline 6 & 200 & 129.90 & 0.5937 & 85.16\% & 0.00 \\
\hline 7 & 250 & 163.52 & 0.5351 & 84.38\% & 0.00 \\
\hline 8 & 300 & 195.07 & 0.4799 & 89.84\% & 0.00 \\
\hline 9 & 350 & 227.90 & 0.4230 & 88.28\% & 0.0 \\
\hline 10 & 390 & 252.96 & 0.3413 & 92.97\% & 0.00 \\
\hline
\end{tabular}
```

See AlsoaugmentedImageSource | imageInputLayer| trainNetwork
Topics
"Deep Learning in MATLAB""Preprocess Images for Deep Learning"
Introduced in R2017b

AveragePooling2DLayer

Average pooling layer

Description

An average pooling layer performs down-sampling by dividing the input into rectangular pooling regions and computing the average values of each region.

Creation

Syntax

```
layer = averagePooling2dLayer(poolSize)
layer = averagePooling2dLayer(poolSize,Name,Value)
```


Description

layer = averagePooling2dLayer(poolSize) creates an average pooling layer and sets the PoolSize property.
layer = averagePooling2dLayer(poolSize, Name, Value) sets the optional Stride and Name properties using name-value pairs. To specify input padding, use the ' Padding ' name-value pair argument. For example, averagePooling2dLayer (2,'Stride',2) creates an average pooling layer with pool size [2 2] and stride [2 2]. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Input Arguments

Use comma-separated name-value pair arguments to specify the size of the zero padding to add along the edges of the layer input or to set the Stride and Name properties. Enclose names in single quotes.

Example: averagePooling2dLayer (2,'Stride', 2) creates an average pooling layer with pool size [2 2] and stride [2 2 2].

Padding — Padding to add to input edges

$\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$ (default) | vector of nonnegative integers | 'same'
Padding to add to input edges, specified as the comma-separated pair consisting of
' Padding ' and one of the following:

- 'same' - The software calculates the size of the padding at training time so that the output has the same size as the input when the stride equals 1 . If the stride is larger than 1 , then the output size is ceil (inputSize/stride), where inputSize is the height or width of the input and stride is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, and to the left and right, if possible. If an odd amount of padding must be added vertically, then the software adds padding to the bottom. If an odd amount of padding must be added horizontally, then the software adds extra padding to the right.
- Nonnegative integer p - Add padding of size p to all the edges of the input.
- Vector [a b] of nonnegative integers - Add padding of size a to the top and bottom of the input and padding of size b to the left and right.
- Vector [t bllll of nonnegative integers - Add padding of size t to the top, b to the bottom, 1 to the left, and r to the right of the input.

Example: 'Padding', 1 adds one row of padding to the top and bottom, and one column of padding to the left and right of the input.

Example: ' Padding ', 'same' adds padding so that the output has the same size as the input (if the stride equals 1).

Properties

PoolSize - Dimensions of pooling regions

vector of two positive integers
Dimensions of the pooling regions, specified as a vector of two positive integers [h w], where h is the height and w is the width. When creating the layer, you can specify PoolSize as a scalar to use the same value for both dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.

Example: [2 1] specifies pooling regions of height 2 and width 1.

Stride - Step size for traversing input

[1 1] (default) | vector of two positive integers
Step size for traversing the input vertically and horizontally, specified as a vector of two positive integers [$a \quad b$], where a is the vertical step size and b is the horizontal step size. When creating the layer, you can specify Stride as a scalar to use the same value for both dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.

Example: $\left[\begin{array}{ll}2 & 3\end{array}\right]$ specifies a vertical step size of 2 and a horizontal step size of 3 .

PaddingSize - Size of padding

$\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$ (default) | vector of four nonnegative integers
Size of padding to apply to input borders, specified as a vector of four nonnegative integers [$\mathrm{t} \mathrm{b} \quad \mathrm{l} \quad \mathrm{r}$], where t is the padding applied to the top, b is the padding applied to the bottom, l is the padding applied to the left, and r is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify padding.
Example: $\left[\begin{array}{llll}1 & 1 & 2 & 2\end{array}\right]$ adds one row of padding to the top and bottom, and two columns of padding to the left and right of the input.

PaddingMode - Method to determine padding size

'manual' (default) | 'same'
Method to determine padding size, specified as 'manual' or 'same'.

If you specify a scalar or vector of nonnegative integers as the 'Padding ' value when creating a layer, then PaddingMode equals 'manual'.

If you specify 'same' as the 'Padding' value when creating a layer, then PaddingMode equals 'same'. The software calculates the size of the padding at training time so that the output has the same size as the input when the stride equals 1 . If the stride is larger than 1 , then the output size is ceil (inputSize/stride), where inputSize is the height or width of the input and stride is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, and to the left and right, if possible. If an odd amount of padding must be added vertically, then the software adds padding to the bottom. If an odd amount of padding must be added horizontally, then the software adds extra padding to the right.

Padding - Size of padding

```
[0 0] (default) | vector of two nonnegative integers
```

Note Padding property will be removed in a future release. Use PaddingSize instead. When you create a layer, use the 'Padding' name-value pair argument to specify padding.

Size of padding to apply to input borders vertically and horizontally, specified as a vector of two nonnegative integers [a b], where a is the padding applied to the top and bottom of the input data and b is the padding applied to the left and right.

Example: $\left[\begin{array}{ll}1 & 1\end{array}\right]$ adds one row of padding to the top and bottom, and one column of padding to the left and right of the input.

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Examples

Create Average Pooling Layer

Create an average pooling layer with the name 'avg1'.

```
layer = averagePooling2dLayer(2,'Name','avg1')
layer =
    AveragePooling2DLayer with properties:
            Name: 'avg1'
        Hyperparameters
        PoolSize: [2 2]
            Stride: [1 1]
        PaddingMode: 'manual'
        PaddingSize: [0 0 0 0
```

Include an average pooling in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    averagePooling2dLayer(2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers =
    7x1 Layer array with layers:
        '' Image Input
    2 '' Convolution
    3 '' ReLU
    4 '' Average Pooling
    5 '' Fully Connected
    6 '' Softmax
    7 '' Classification Output
    28x28x1 images with 'zerocenter' normalization
                                2 0 ~ 5 \times 5 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~ [ 1 ~ 1 ] ~ a n d ~ p a d d i r ~
ReLU
2x2 average pooling with stride [1 1] and paddir
10 fully connected layer
softmax
crossentropyex
```

Create Average Pooling Layer with Nonoverlapping Pooling Regions
Create an average pooling layer with nonoverlapping pooling regions.

```
layer = averagePooling2dLayer(2,'Stride',2)
layer =
    AveragePooling2DLayer with properties:
            Name: ''
    Hyperparameters
        PoolSize: [2 2]
            Stride: [2 2]
    PaddingMode: 'manual'
    PaddingSize: [0 0 0 0]
```

The height and width of the rectangular regions (pool size) are both 2 . The pooling regions do not overlap because the step size for traversing the images vertically and horizontally (stride) is also 2 .

Include an average pooling layer with nonoverlapping regions in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer (5,20)
    reluLayer
    averagePooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers =
    7x1 Layer array with layers:
```


Create Average Pooling Layer with Overlapping Pooling Regions

Create an average pooling layer with overlapping pooling regions.

```
layer = averagePooling2dLayer([3 2],'Stride',2)
layer =
    AveragePooling2DLayer with properties:
                Name: ''
    Hyperparameters
        PoolSize: [3 2]
            Stride: [2 2]
        PaddingMode: 'manual'
        PaddingSize: [0 0 0 0]
```

This layer creates pooling regions of size [32] and takes the average of the six elements in each region. The pooling regions overlap because Stride includes dimensions that are less than the respective pooling dimensions PoolSize.

Include an average pooling layer with overlapping pooling regions in a Layer array.

```
layers = [ ...
    imageInputLayer([[28 28 1])
    convolution2dLayer (5,20)
    reluLayer
    averagePooling2dLayer([3 2],'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
```


layers =

```
7x1 Layer array with layers:
```


- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

Definitions

Average Pooling Layer

An average pooling layer outputs the average values of rectangular regions of its input. The PoolSize property determines the size of the rectangular regions. For example, if PoolSize is $[2,3]$, then the layer outputs the average value of regions of height 2 and width 3. The layer scans through the input horizontally and vertically in step sizes specified by the Stride property. If the pooling region dimensions PoolSize are less than or equal to the stride dimensions Stride, then the pooling regions do not overlap.

Pooling layers perform down-sampling operations. The output size of a pooling layer with input size InputSize has dimensions (InputSize - PoolSize $+2 *$ PaddingSize)/Stride +1 . This value must be an integer for the whole image to be fully covered. If the combination of these parameters does not lead the image to be fully covered, the software, by default, ignores the remaining part of the image along the right and bottom edges.

See Also

Convolution2dLayer | MaxPooling2dLayer

Topics

"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2016a

ClassificationOutputLayer

Classification output layer

Description

A classification output layer holds the name of the loss function the software uses for training the network for multiclass classification, the size of the output, and the class labels.

Creation

Create a classification output layer using classificationLayer.

Properties

OutputSize - Size of the output

'auto' (default) | positive integer
This property is read-only.
Size of the output, specified as a positive integer. The software determines the size of the output during training. This value is the number of labels in the data. Before the training, the output size is set to 'auto'. After training, you can view the output size by indexing into the Layers property of the SeriesNetwork object.

LossFunction - Loss function for training

'crossentropyex'
This property is read-only.
Loss function for training, specified as 'crossentropyex', which stands for "Cross Entropy Function for k Mutually Exclusive Classes" on page 1-764.

Data Types: char

ClassNames - Names of the classes

\{\} (default) | cell array
This property is read-only.
Names of the classes, specified as a cell array of class names determined during training. Before training, this property is an empty cell array.

Data Types: cell

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Examples

Create Classification Output Layer
Create a classification output layer with the name 'coutput'.
layer = classificationLayer('Name','coutput')
layer
ClassificationOutputLayer with properties:
Name: 'coutput'
ClassNames: $\{1 \times 0$ cell\}
OutputSize: 'auto'
Hyperparameters
LossFunction: 'crossentropyex'

The default loss function for classification is cross entropy for ${ }^{k}$ mutually exclusive classes.

Include a classification output layer in a Layer array.

```
layers = [ ...
    imageInputLayer([[28 28 1])
    convolution2dLayer (5, 20)
    reluLayer
    maxPooling2dLayer(2,'Stride', 2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers =
    7x1 Layer array with layers:
```

1	''	Image Input	$28 \times 28 \times 1$ images with 'zerocenter' normalization
2	''	Convolution	205×5 convolutions with stride $\left[\begin{array}{lll}1 & 1] \text { and paddir } \\ 3 & \text { '' } & \text { ReLU }\end{array}\right.$
4	''	Max Pooling	ReLU
5	''	Fully Connected	2×2 max pooling with stride $\left[\begin{array}{lll}2 & 2] & \text { and padding }\end{array}\right]$
6	''	Softmax	10 fully connected layer
7	''	Classification Output	

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

Definitions

Cross Entropy Function for k Mutually Exclusive Classes

For multiclass classification problems, the software assigns each input to one of the k mutually exclusive classes. The loss (error) function for this case is the cross entropy function for a 1 -of- k coding scheme:
$E(\boldsymbol{\theta})=-\sum_{i=1}^{n} \sum_{j=1}^{k} t_{i j} \ln y_{j}\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right)$,
where $\boldsymbol{\theta}$ is the parameter vector, $t_{i j}$ is the indicator that the i th sample belongs to the j th class, and $y_{j}\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right)$ is the output for sample i. The output $y_{j}\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right)$ can be interpreted as the probability that the network associates i th input with class j, that is,
$P\left(t_{j}=1 \mid \boldsymbol{x}_{i}\right)$.

The output unit activation function is the softmax function:

$$
y_{r}(\boldsymbol{x})=\frac{\exp \left(a_{r}(\boldsymbol{x})\right)}{\sum_{j=1}^{k} \exp \left(a_{j}(\boldsymbol{x})\right)},
$$

where $0 \leq y_{r} \leq 1$ and $\sum_{j=1}^{k} y_{j}=1$.

References

[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

See Also

RegressionOutputLayer | SoftmaxLayer

Topics

"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2016a

Convolution2DLayer

2-D convolutional layer

Description

A 2-D convolutional layer applies sliding filters to the input. The layer convolves the input by moving the filters along the input vertically and horizontally and computing the dot product of the weights and the input, and then adding a bias term.

Creation

Syntax

```
layer = convolution2dLayer(filterSize,numFilters)
layer = convolution2dLayer(filterSize, numFilters,Name,Value)
```


Description

layer = convolution2dLayer(filterSize, numFilters) creates a 2-D convolutional layer and sets the FilterSize and NumFilters properties.
layer = convolution2dLayer(filterSize,numFilters,Name,Value) sets the optional Stride, NumChannels, WeightLearnRateFactor, BiasLearnRateFactor, WeightL2Factor, BiasL2Factor, and Name properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair argument. For example, convolution2dLayer (11, 96,'Stride',4,'Padding',1) creates a 2-D convolutional layer with 96 filters of size [11 11], a stride of [4 4], and zero padding of size 1 along all edges of the layer input. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Input Arguments

Use comma-separated name-value pair arguments to specify the size of the zero padding to add along the edges of the layer input or to set the Stride, NumChannels, WeightLearnRateFactor, BiasLearnRateFactor, WeightL2Factor, BiasL2Factor, and Name properties. Enclose names in single quotes.

Example: convolution2dLayer (3,16, 'Padding', 'same') creates a 2-D convolutional layer with 16 filters of size [3 3] and 'same' padding. At training time the software calculates the size of the zero padding so that the layer output has the same size as the input.

Padding — Padding to add to input edges

$\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$ (default) | vector of nonnegative integers | 'same'
Padding to add to input edges, specified as the comma-separated pair consisting of
'Padding ' and one of the following:

- 'same' - The software calculates the size of the padding at training time so that the output has the same size as the input when the stride equals 1 . If the stride is larger than 1 , then the output size is ceil (inputSize/stride), where inputSize is the height or width of the input and stride is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, and to the left and right, if possible. If an odd amount of padding must be added vertically, then the software adds padding to the bottom. If an odd amount of padding must be added horizontally, then the software adds extra padding to the right.
- Nonnegative integer p - Add padding of size p to all the edges of the input.
- Vector [a b] of nonnegative integers - Add padding of size a to the top and bottom of the input and padding of size b to the left and right.
- Vector [t bllla of nonnegative integers - Add padding of size t to the top, b to the bottom, 1 to the left, and r to the right of the input.

Example: 'Padding' , 1 adds one row of padding to the top and bottom, and one column of padding to the left and right of the input.

Example: 'Padding','same' adds padding so that the output has the same size as the input (if the stride equals 1).

Properties

FilterSize - Height and width of filters

vector of two positive integers
Height and width of the filters, specified as a vector of two positive integers [h w], where h is the height and w is the width. FilterSize defines the size of the local regions to which the neurons connect in the input.

If you set FilterSize using an input argument, then you can specify FilterSize as scalar to use the same value for both dimensions.

Example: [5 5] specifies filters of height 5 and width 5.

NumFilters - Number of filters

positive integer
Number of filters, specified as a positive integer. This number corresponds to the number of neurons in the convolutional layer that connect to the same region in the input. This parameter determines the number of channels (feature maps) in the output of the convolutional layer.
Example: 96

Stride - Step size for traversing input

[1 1] (default) | vector of two positive integers
Step size for traversing the input vertically and horizontally, specified as a vector of two positive integers [a b], where a is the vertical step size and b is the horizontal step size. When creating the layer, you can specify Stride as a scalar to use the same value for both dimensions.

Example: [2 3] specifies a vertical step size of 2 and a horizontal step size of 3 .

PaddingSize - Size of padding

$\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$ (default) | vector of four nonnegative integers
Size of padding to apply to input borders, specified as a vector of four nonnegative integers [$t \mathrm{~b} \quad \mathrm{l} \quad \mathrm{r}$], where t is the padding applied to the top, b is the padding applied to the bottom, l is the padding applied to the left, and r is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify padding.

Example: $\left.\begin{array}{llll}1 & 1 & 2 & 2\end{array}\right]$ adds one row of padding to the top and bottom, and two columns of padding to the left and right of the input.

PaddingMode - Method to determine padding size

'manual' (default) | 'same'
Method to determine padding size, specified as 'manual' or 'same'.
If you specify a scalar or vector of nonnegative integers as the 'Padding' value when creating a layer, then PaddingMode equals 'manual'.

If you specify 'same' as the 'Padding' value when creating a layer, then PaddingMode equals 'same'. The software calculates the size of the padding at training time so that the output has the same size as the input when the stride equals 1 . If the stride is larger than 1 , then the output size is ceil (inputSize/stride), where inputSize is the height or width of the input and stride is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, and to the left and right, if possible. If an odd amount of padding must be added vertically, then the software adds padding to the bottom. If an odd amount of padding must be added horizontally, then the software adds extra padding to the right.

Padding - Size of padding

[0 0] (default) | vector of two nonnegative integers

Note Padding property will be removed in a future release. Use PaddingSize instead. When you create a layer, use the 'Padding' name-value pair argument to specify padding.

Size of padding to apply to input borders vertically and horizontally, specified as a vector of two nonnegative integers [a b], where a is the padding applied to the top and bottom of the input data and b is the padding applied to the left and right.

Example: [11 1] adds one row of padding to the top and bottom, and one column of padding to the left and right of the input.

Weights — Layer weights

4-D array

Layer weights for the convolutional layer, specified as a FilterSize (1)-byFilterSize (2)-by-NumChannels-by-NumFilters array.

You cannot set this property using a name-value pair.
Data Types: single | double

Bias - Layer biases

3-D array
Layer biases for the convolutional layer, specified as a 1-by-1-by-NumFilters array.
You cannot set this property using a name-value pair.
Data Types: single | double

NumChannels - Number of channels for each filter

'auto' (default) | positive integer
Number of channels for each filter, specified as 'auto' or a positive integer.
This parameter is always equal to the channels of the input to this convolutional layer. For example, if the input is a color image, then the number of channels for the input is 3 . If the number of filters for the convolutional layer prior to the current layer is 16, then the number of channels for this layer is 16 .

If NumChannels is 'auto', then the software infers the correct value for the number of channels during training time.

Example: 256

WeightLearnRateFactor — Learning rate factor for the weights

 1 (default) | nonnegative scalarLearning rate factor for the weights, specified as a nonnegative scalar.
The software multiplies this factor by the global learning rate to determine the learning rate for the weights in the layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the weights in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

Example: 2

BiasLearnRateFactor - Learning rate factor for biases

1 (default) | nonnegative scalar
Learning rate factor for the biases, specified as a nonnegative scalar.
The software multiplies this factor by the global learning rate to determine the learning rate for the biases in the layer. For example, if BiasLearnRateFactor is 2 , then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

Example: 2

WeightL2Factor - L2 regularization factor for the weights
nonnegative scalar
L2 regularization factor for the weights, specified as a nonnegative scalar.
The software multiplies this factor by the global L2 regularization factor to determine the learning rate for the weights in the layer. For example, if WeightL2Factor is 2, then the L2 regularization for the weights in the layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the trainingOptions function.

Example: 2

BiasL2Factor - L2 regularization factor for biases

nonnegative scalar
L2 regularization factor for the biases, specified as a nonnegative scalar.
The software multiplies this factor by the global L2 regularization factor to determine the learning rate for the biases in the layer. For example, if BiasL2Factor is 2, then the L2 regularization for the biases in the layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the trainingOptions function.

Example: 2

Name - Layer name

' ' (default) | character vector

Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Examples

Create Convolutional Layer

Create a convolutional layer with 96 filters, each with a height and width of 11 . Use a stride (step size) of 4 in the horizontal and vertical directions.

```
layer = convolution2dLayer(11,96,'Stride',4)
layer =
    Convolution2DLayer with properties:
                Name: ''
        Hyperparameters
            FilterSize: [11 11]
        NumChannels: 'auto'
            NumFilters: 96
                Stride: [4 4]
        PaddingMode: 'manual'
        PaddingSize: [0 0 0 0]
        Learnable Parameters
            Weights: []
                            Bias: []
```

 Show all properties
 Include a convolutional layer in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer (5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
```

```
    softmaxLayer
classificationLayer]
layers =
    7x1 Layer array with layers:
        '' Image Input
        '' Convolution
        '' ReLU
        '' Max Pooling
        '' Fully Connected
        '' Softmax
        '' Classification Output
```

```
28x28x1 images with 'zerocenter' normalization
2 0 ~ 5 \times 5 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~ [ 1 ~ 1 ] ~ a n d ~ p a d d i r ~
ReLU
2x2 max pooling with stride [2 2] and padding
10 fully connected layer
softmax
crossentropyex
```


Specify Initial Weights and Biases in Convolutional Layer

Create a convolutional layer with 32 filters, each with a height and width of 5 . Pad the input image with 2 pixels along its border. Set the learning rate factor for the bias to 2 . Manually initialize the weights from a Gaussian distribution with a standard deviation of 0.0001 .

```
layer = convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2)
layer
    Convolution2DLayer with properties:
                Name: ''
        Hyperparameters
            FilterSize: [5 5]
        NumChannels: 'auto'
            NumFilters: 32
                Stride: [1 1]
        PaddingMode: 'manual'
        PaddingSize: [2 2 2 2]
        Learnable Parameters
            Weights: []
                        Bias: []
    Show all properties
```

Suppose the input has color images. Manually initialize the weights from a Gaussian distribution with standard deviation of 0.0001 .

```
layer.Weights = randn([5 5 3 32]) * 0.0001;
```

The size of the local regions in the layer is 5 -by- 5 . The number of color channels for each region is 3 . The number of feature maps is 32 (the number of filters). Therefore, there are $5 * 5 * 3 * 32$ weights in the layer.
randn ([5 $\left.5 \begin{array}{lll}5 & 3 & 32\end{array}\right]$) returns a 5-by-5-by-3-by-32 array of values from a Gaussian distribution with a mean of 0 and a standard deviation of 1 . Multiplying the values by 0.0001 sets the standard deviation of the Gaussian distribution equal to 0.0001 .

Similarly, initialize the biases from a Gaussian distribution with a mean of 1 and a standard deviation of 0.00001 .

```
layer.Bias = randn([[1 1 32])*0.00001 + 1;
```

There are 32 feature maps, and therefore 32 biases. randn ([$\left.\begin{array}{lll}1 & 1 & 32\end{array}\right]$) returns a 1-by-1-by- 32 array of values from a Gaussian distribution with a mean of 0 and a standard deviation of 1 . Multiplying the values by 0.00001 sets the standard deviation of values equal to 0.00001 , and adding 1 sets the mean of the Gaussian distribution equal to 1 .

Create Convolutional Layer That Fully Covers the Input

Suppose the size of the input is 28 -by- $28-1$. Create a convolutional layer with 16 filters that have a height of 6 and a width of 4 , that traverses the input with a stride of 4 both horizontally and vertically. Make sure the convolution covers the input completely.

For the convolution to fully cover the input, both the horizontal and vertical output dimensions must be integer numbers. For the horizontal output dimension to be an integer, one row zero padding is required on the top and bottom of the image: (28$6+2 * 1) / 4+1=7$. For the vertical output dimension to be an integer, no zero padding is required: $(28-4+2 * 0) / 4+1=7$. Construct the convolutional layer as follows:

```
layer = convolution2dLayer([6 4],16,'Stride',4,'Padding',[1 0])
layer =
    Convolution2DLayer with properties:
```

```
Name: ''
Hyperparameters
    FilterSize: [6 4]
    NumChannels: 'auto'
    NumFilters: 16
        Stride: [4 4]
    PaddingMode: 'manual'
    PaddingSize: [1 1 0 0}
Learnable Parameters
    Weights: []
        Bias: []
Show all properties
```

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

Definitions

Convolutional Layer

A convolutional layer consists of neurons that connect to small regions of the input or the layer before it. These regions are called filters. You can specify the size of these regions using the filterSize input argument.

For each region, the software computes a dot product of the weights and the input, and then adds a bias term. The filter then moves along the input vertically and horizontally, repeating the same computation for each region, that is, convolving the input. The step size with which it moves is called the stride. You can specify this step size with the Stride property. These local regions that the neurons connect to might overlap depending on the filter size and the stride.

The number of weights used for a filter is $h^{*} w^{*} c$, where h is the height, and w is the width of the filter size, and c is the number of channels in the input (for example, if the input is a color image, then the number of channels is three). As a filter moves along the input, it uses the same set of weights and bias for the convolution, forming a feature
map. The convolution layer usually has multiple feature maps, each with a different set of weights and a bias. The number of filters determines the number of feature maps.

The total number of parameters in a convolutional layer is $\left(\left(h^{*} w^{*} c+1\right)^{*}\right.$ Number of Filters), where 1 is for the bias.

The output height and width of the convolutional layer is (Input Size - Filter Size $+2 *$ Padding)/Stride +1 . This value must be an integer for the whole image to be fully covered. If the combination of these parameters does not lead the image to be fully covered, then the software by default ignores the remaining part of the image along the right and bottom edge in the convolution.

The total number of neurons in a feature map, say Map Size, is the product of the output height and width. The total number of neurons (output size) in a convolutional layer, then, is Map Size*Number of Filters.

For example, suppose that the input image is a 28 -by- 28 -by- 3 color image. For a convolutional layer with 16 filters, and a filter size of 8 -by- 8 , the number of weights per filter is $8 * 8 * 3=192$, and the total number of parameters in the layer is $(192+1) * 16=$ 3088. Assuming stride is 4 in each direction, the total number of neurons in each feature map is 6 -by- $6((28-8+0) / 4+1=6)$. Then, the total number of neurons in the layer is $6 * 6 * 16=256$. Usually, the results from these neurons pass through some form of nonlinearity, such as rectified linear units (ReLU).

References

[1] Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. "Handwritten Digit Recognition with a Back-Propagation Network." In Advances in Neural Information Processing Systems. 1990.
[2] LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based Learning Applied to Document Recognition." Proceedings of the IEEE. Vol 86, pp. 2278-2324, 1998.
[3] Murphy, K. P. Machine Learning: A Probabilistic Perspective. Cambridge, Massachusetts: The MIT Press, 2012.

See Also

MaxPooling2dLayer \| batchNormalizationLayer | fullyConnectedLayer | reluLayer | trainNetwork

Topics
"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2016a

TransposedConvolution2dLayer

Transposed 2-D convolution layer

Description

You can use the transposed 2-D convolution layer, also known as a deconvolution (deconv) layer, to upsample feature maps.

Creation

Syntax

```
layer = transposedConv2dLayer(filterSize,numFilters)
layer = transposedConv2dLayer(filterSize,numFilters,Name,Value)
```


Description

layer = transposedConv2dLayer(filterSize, numFilters) returns a transposed 2 -D convolution layer. You can specify equal height and width as a scalar, or specify them separately as a vector, $[h w]$. Use numFilters to specify the number of channels in the output feature map.

- Height and width of the output feature map:
- stride*(input_size - 1) + filterSize - 2 * cropping
- Size of the layer's Weights matrix:
- [filterSize numFilters numChannels
- Size of layer's Bias vector:
- [1 1 numFilters
layer $=$ transposedConv2dLayer(filterSize, numFilters,Name, Value) returns a transposed 2-D convolutional layer and sets the optional Stride, Cropping,

NumChannels, WeightLearnRateFactor, BiasLearnRateFactor, WeightL2Factor, BiasL2Factor, and Name properties.

Properties

Stride — Step size for traversing input
 [1 1] (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector of two positive integers [a b], where a is the vertical step size and b is the horizontal step size. When creating the layer, you can specify Stride as a scalar to use the same value for both dimensions.

Example: $\left[\begin{array}{ll}2 & 3\end{array}\right]$ specifies a vertical step size of 2 and a horizontal step size of 3.

Cropping - Output layer size reduction

0 (default) | scalar | 2 -element vector
Output layer size reduction, specified as 'Cropping' and a scalar or scalar vector. You can trim the edges of the full transposed convolution by the same amount or specify vertical and horizontal amounts. If you specify a vector, [vertical,horizontal], the vertical value trims the top and bottom, and the horizontal value trims the sides.

Data Types: single | double

NumChannels - Number of channels for each filter 'auto' (default) | integer

Number of channels for each filter, specified as 'NumChannels' and a character vector 'auto' or an integer.

This parameter must be equal to the number of channels of the input to this convolutional layer. For example, if the input is a color image, then the number of channels for the input must be 3. If the number of filters for the convolutional layer prior to the current layer is 16 , then the number of channels for this layer must be 16 .

WeightLearnRateFactor - Learning rate factor for the weights

1 (default) | nonnegative scalar
Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the weights in the layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the weights in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

Example: 2

BiasLearnRateFactor - Learning rate factor for biases

1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.
The software multiplies this factor by the global learning rate to determine the learning rate for the biases in the layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

Example: 2

WeightL2Factor - L2 regularization factor for the weights nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.
The software multiplies this factor by the global L2 regularization factor to determine the learning rate for the weights in the layer. For example, if WeightL2Factor is 2 , then the L 2 regularization for the weights in the layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the trainingOptions function.

Example: 2

BiasL2Factor - L2 regularization factor for biases

nonnegative scalar
L2 regularization factor for the biases, specified as a nonnegative scalar.
The software multiplies this factor by the global L2 regularization factor to determine the learning rate for the biases in the layer. For example, if BiasL2Factor is 2 , then the L 2 regularization for the biases in the layer is twice the global L 2 regularization factor.

You can specify the global L2 regularization factor using the trainingOptions function.

Example: 2

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Examples

Create a Transposed Convolutional Layer With 96 Filters

Set the height and width of the layer to 11 . Use a stride of 4 in the horizontal and vertical directions.

```
layer = transposedConv2dLayer(11,96,'Stride',4);
```

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

Tips

- This layer can sometimes gets incorrectly referred to as a "deconvolution" or "deconv" layer. This layer is the transpose of convolution and does not peform deconvolution.

See Also
 CrossChannelNormalizationLayer | AveragePooling2dLayer |
 Convolution2dLayer \| MaxPooling2dLayer

Topics

"Create Simple Deep Learning Network for Classification"

"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2017b

CrossChannelNormalizationLayer

Channel-wise local response normalization layer

Description

A channel-wise local response normalization layer carries out channel-wise normalization.

Creation

Syntax

```
layer = crossChannelNormalizationLayer(windowChannelSize)
layer = crossChannelNormalizationLayer(windowChannelSize,Name,Value)
```


Description

layer = crossChannelNormalizationLayer(windowChannelSize) creates a channel-wise local response normalization layer and sets the WindowChannelSize property.
layer = crossChannelNormalizationLayer(windowChannelSize,Name,Value) sets the optional properties WindowChannelSize, Alpha, Beta, K, and CrossChannelNormalizationLayer using name-value pairs. For example, crossChannelNormalizationLayer (5,'K',1) creates a local response normalization layer for channel-wise normalization with a window size of 5 and K hyperparameter 1. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Properties

WindowChannelSize - Size of the channel window

positive integer

Size of the channel window, which controls the number of channels that are used for the normalization of each element, specified as a positive integer.

If WindowChannelSize is even, then the window is asymmetric. The software looks at the previous floor ($(\mathrm{w}-1) / 2$) channels and the following floor (w/2) channels. For example, if WindowChannelSize is 4 , then the layer normalizes each element by its neighbor in the previous channel and by its neighbors in the next two channels.

Example: 5

Alpha - α hyperparameter in normalization

0.0001 (default) | numeric scalar
a hyperparameter in the normalization (the multiplier term), specified as a numeric scalar.

Example: 0.0002

Beta - β hyperparameter in normalization

0.75 (default) | numeric scalar

β hyperparameter in the normalization, specified as a numeric scalar.
Example: 0.8

K - Khyperparameter in the normalization

2 (default) | numeric scalar
K hyperparameter in the normalization, specified as a numeric scalar.
Example: 2.5

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Examples

Create Local Response Normalization Layer

Create a local response normalization layer for channel-wise normalization, where a window of five channels normalizes each element, and the additive constant for the normalizer K is 1 .

```
layer = crossChannelNormalizationLayer(5,'K',1)
layer =
    CrossChannelNormalizationLayer with properties:
    Name: ''
    Hyperparameters
        WindowChannelSize: 5
                            Alpha: 1.0000e-04
                            Beta: 0.7500
                        K: 1
```

Include a local response normalization layer in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer (5,20)
    reluLayer
    crossChannelNormalizationLayer(3)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers =
    7x1 Layer array with layers:
        '' Image Input
        2 '' Convolution
        '' ReLU
        '' Cross Channel Normalization
        '' Fully Connected
        '' Softmax
        '' Classification Output
```

$28 x 28 x 1$ images with 'zerocenter' normalizat
205×5 convolutions with stride [1 1] and
ReLU
cross channel normalization with 3 channels
10 fully connected layer
softmax
crossentropyex

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

Definitions

Local Response Normalization

$$
\begin{aligned}
& \text { For each element } x_{x} \text { in the input, the software computes a normalized value } x_{x}^{\prime} \text { using } \\
& \left(K+\frac{\alpha^{*} \text { ss }}{\text { windowChannelSize }}\right)^{\beta}
\end{aligned}
$$

where K, a, and β are the hyperparameters, and $s s$ is the sum of squares of the elements in the normalization window. This formula is slightly different than the formula presented in [1]. You can obtain the equivalent formula by multiplying the alpha value by the windowChannelSize.

References

[1] Krizhevsky, A., I. Sutskever, and G. E. Hinton. "ImageNet Classification with Deep Convolutional Neural Networks." Advances in Neural Information Processing Systems. Vol. 25, 2012.

See Also

AveragePooling2dLayer | Convolution2dLayer | MaxPooling2dLayer

Topics

"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2016a

DropoutLayer

Dropout layer

Description

A dropout layer randomly sets input elements to zero with a given probability.

Creation

Syntax

```
layer = dropoutLayer
layer = dropoutLayer(probability)
layer = dropoutLayer(
```

\qquad

``` ,'Name',Name)
```


Description

layer = dropoutLayer creates a dropout layer.
layer = dropoutLayer(probability) creates a dropout layer and sets the Probability property.
layer = dropoutLayer (___,'Name',Name) sets the optional Name "Name" on page 1-0 property using a name-value pair and any of the arguments in the previous syntaxes. For example, dropoutLayer (0.4,'Name','drop1') creates a dropout layer with dropout probability 0.4 and name 'drop1'. Enclose the property name in single quotes.

Properties

Probability — Probability to drop out input elements

0.5 (default) | numeric scalar in the range 0 to 1

Probability for dropping out input elements (neurons) during training time, specified as a numeric scalar in the range $0-1$.

A higher number results in more neurons being dropped during training.
Example: 0.4

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Examples

Create Dropout Layer

Create a dropout layer with name 'drop1'.

```
layer = dropoutLayer('Name','drop1')
layer =
    DropoutLayer with properties:
```

 Name: 'drop1'
 Hyperparameters
 Probability: 0.5000
 Include a dropout layer in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    dropoutLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
```


layers =

7x1 Layer array with layers:

1	''	Image Input	$28 \times 28 \times 1$ images with 'zerocenter' normalization
2	''	Convolution	205×5 convolutions with stride $[1$ 1] and paddir
3	''	ReLU	ReLU
4	''	Dropout	50% dropout
5	''	Fully Connected	10 fully connected layer
6	''	Softmax	softmax
7	''	Classification Output	crossentropyex

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

Definitions

Dropout Layer

A dropout layer randomly sets input elements to zero with a given probability.
This operation corresponds to temporarily dropping a randomly chosen unit and all its connections from the network during training. So, for each new input element, the software randomly selects a subset of neurons, forming a different network architecture. These architectures use common weights, but because the learning does not depend on specific neurons and connections, the dropout layer may help prevent overfitting [1], [2].

References

[1] Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. "Dropout: A Simple Way to Prevent Neural Networks from Overfitting." Journal of Machine Learning Research. Vol. 15, pp. 1929-1958, 2014.
[2] Krizhevsky, A., I. Sutskever, and G. E. Hinton. "ImageNet Classification with Deep Convolutional Neural Networks." Advances in Neural Information Processing Systems. Vol. 25, 2012.

See Also
ImageInputLayer \| ReLULayer
Topics
"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"
Introduced in R2016a

FullyConnectedLayer

Fully connected layer

Description

A fully connected layer multiplies the input by a weight matrix and then adds a bias vector.

Creation

Syntax

```
layer = fullyConnectedLayer(outputSize)
layer = fullyConnectedLayer(outputSize,Name,Value)
```


Description

layer = fullyConnectedLayer(outputSize) returns a fully connected layer and specifies the OutputSize property.
layer = fullyConnectedLayer(outputSize, Name, Value) sets the optional properties WeightLearnRateFactor, BiasLearnRateFactor, WeightL2Factor, BiasL2Factor, and Name using name-value pairs. For example, fullyConnectedLayer (10,'Name','fc1') creates a fully connected layer with an output size of 10 and the name 'fc1'. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Properties

WeightLearnRateFactor - Learning rate factor for the weights

[^3]Learning rate factor for the weights, specified as a nonnegative scalar.
The software multiplies this factor by the global learning rate to determine the learning rate for the weights in the layer. For example, if WeightLearnRateFactor is 2 , then the learning rate for the weights in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

Example: 2

BiasLearnRateFactor - Learning rate factor for biases

1 (default) | nonnegative scalar
Learning rate factor for the biases, specified as a nonnegative scalar.
The software multiplies this factor by the global learning rate to determine the learning rate for the biases in the layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

Example: 2

WeightL2Factor - L2 regularization factor for the weights

nonnegative scalar
L2 regularization factor for the weights, specified as a nonnegative scalar.
The software multiplies this factor by the global L2 regularization factor to determine the learning rate for the weights in the layer. For example, if WeightL2Factor is 2 , then the L2 regularization for the weights in the layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the trainingOptions function.

Example: 2

BiasL2Factor - L2 regularization factor for biases
 nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.
The software multiplies this factor by the global L2 regularization factor to determine the learning rate for the biases in the layer. For example, if BiasL2Factor is 2, then the

L2 regularization for the biases in the layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the trainingoptions function.

Example: 2

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector. If Name is set to ' ' , then the software automatically assigns a name at training time.

Data Types: char

InputSize - Input size

'auto' (default) | positive integer
Input size for the fully connected layer, specified as a positive integer or 'auto'. If InputSize is 'auto', then the software automatically determines the input size during training.

OutputSize - Output size

positive integer
Output size for the fully connected layer, specified as a positive integer.

Example: 10

Weights — Layer weights

matrix
Layer weights, specified as an OutputSize-by-InputSize matrix.
Data Types: single | double

Bias - Layer biases

matrix
Layer biases, specified as an OutputSize-by-1 matrix.
Data Types: single | double

Examples

Create Fully Connected Layer

Create a fully connected layer with an output size of 10 and the name ' fcl'.
layer $=$ fullyconnectedLayer(10,'Name','fc1')
layer =
FullyConnectedLayer with properties:
Name: 'fc1'

Hyperparameters
InputSize: 'auto'
OutputSize: 10

Learnable Parameters
Weights: []
Bias: []

Show all properties

Include a fully connected layer in a Layer array.

```
layers = [ ...
    imageInputLayer([[28 28 1])
    convolution2dLayer (5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers =
    7x1 Layer array with layers:
```



```
6 '' Softmax softmax
7 '' Classification Output crossentropyex
```


Specify Initial Weights and Biases in Fully Connected Layer

Create a fully connected layer with an output size of 10 . Set the learning rate factor for the bias to 2 . Manually initialize the weights from a Gaussian distribution with a standard deviation of 0.0001.

```
layers = [imageInputLayer([28 28 1])
        convolution2dLayer (5,20)
        reluLayer
        maxPooling2dLayer(2,'Stride',2)
        fullyConnectedLayer(10)
        softmaxLayer
        classificationLayer]
layers =
    7x1 Layer array with layers:
```

1	''	Image Input	28x28x1 images with 'zerocenter' normalization
2	''	Convolution	205×5 convolutions with stride [1 1] and paddir
3	''	ReLU	ReLU
4	''	Max Pooling	2 x 2 max pooling with stride [2 2] and padding
5	''	Fully Connected	10 fully connected layer
6	''	Softmax	softmax
7	''	Classification Output	crossentropyex

To initialize the weights of the fully connected layer, you must know the layer's input size. The input size is equal to the output size of the preceding max pooling layer, which, in turn, depends on the output size of the convolutional layer.

For one direction in a channel (feature map) of the convolutional layer, the output is $((28-5+2 \times 0) / 1)+1$. The max pooling layer has nonoverlapping regions, so it downsamples by 2 in each direction, that is, $24 / 2=12$. For one channel of the convolutional layer, the output of the max pooling layer is $12 \times 12=144$. There are 20 channels in the convolutional layer, so the output of the max pooling layer is $144 \times 20=2880$. This is the size of the input to the fully connected layer.

The formula for overlapping regions gives the same result. For one direction of a channel, the output is $((24-2+0) / 2)+1=12$. For one channel, the output is 144 . For all 20 channels in the convolutional layer, the output of the max pooling layer is 2880.

Initialize the weights of the fully connected layer from a Gaussian distribution with a mean of 0 and a standard deviation of 0.0001.
layers(5).Weights $=$ randn ([10 2880]) * 0.0001;
randn ([10 2880]) returns a 10-by-2880 matrix of values from a Gaussian distribution with mean 0 and standard deviation 1 . Multiplying the values by 0.0001 sets the standard deviation of the Gaussian distribution equal to 0.0001 .

Initialize the biases from a Gaussian distribution with a mean of 1 and a standard deviation of 0.0001 .
layers(5). Bias $=\operatorname{randn}\left(\left[\begin{array}{ll}10 & 1\end{array}\right]\right) * 0.0001+1 ;$
The size of the bias vector is equal to the output size of the fully connected layer, which is 10. randn ($\left[\begin{array}{ll}10 & 1\end{array}\right]$) returns a 10 -by- 1 vector of values from a Gaussian distribution with a mean of 0 and a standard deviation of 1 . Multiplying the values by 0.00001 sets the standard deviation of values equal to 0.00001 , and adding 1 sets the mean of the Gaussian distribution equal to 1 .

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

Algorithms

The default for the initial weights is a Gaussian distribution with mean 0 and standard deviation 0.01 . The default for the initial bias is 0 . For an example showing how to manually change the initialization for the weights and bias, see "Specify Initial Weights and Biases in Fully Connected Layer" on page 1-795.

See Also

BatchNormalizationLayer | Convolution2dLayer | ReLULayer |
RegressionOutputLayer | trainNetwork

Topics
"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2016a

ImageInputLayer

Image input layer

Description

An image input layer inputs images to a network and applies data normalization.

Creation

Syntax

```
layer = imageInputLayer(inputSize)
layer = imageInputLayer(inputSize,Name,Value)
```


Description

layer = imageInputLayer(inputSize) returns an image input layer and specifies the InputSize property.
layer = imageInputLayer(inputSize,Name, Value) sets the optional properties on page 1-798 using name-value pairs. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Properties

InputSize - Size of the input
row vector of three integer values
Size of the input data, specified as a row vector of three integer values [h w c], where h is the height, w is the width, and c is the number of channels. If you set InputSize using the function imageInputLayer, you can specify inputSize as a row vector of two values [h w] to set the number of channels to 1 .

You must specify the number channels to be 1 or 3 .
Example: [128 128 3]

DataAugmentation - Data augmentation transforms

'none' (default) | 'randcrop' | 'randfliplr' | cell array of 'randcrop' and
'randfliplr'

Note The DataAugmentation property is not recommended. To preprocess images with cropping, reflection, and other geometric transformations, use augmentedImageSource instead.

Data augmentation transforms to use during training, specified as one of the following.

- 'none' - No data augmentation
- 'randcrop' - Take a random crop from the training image. The random crop has the same size as the input size.
- 'randfliplr' - Randomly flip the input images horizontally with a 50% chance.
- Cell array of 'randcrop' and 'randfliplr'. The software applies the augmentation in the order specified in the cell array.

Augmentation of image data is another way of reducing overfitting [1], [2].
Data Types: char | cell

Normalization - Data transformation

'zerocenter' (default) | 'none'
Data transformation to apply every time data is forward propagated through the input layer, specified as one of the following.

- 'zerocenter' - The layer subtracts the mean image of the training set.
- 'none' - No transformation.

Data Types: char

Name - Layer name

' ' (default) | character vector

Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Examples

Create Image Input Layer

Create an image input layer for 28 -by- 28 color images with name 'input'. By default, the layer performs data normalization by subtracting the mean image of the training set from every input image.

```
inputlayer = imageInputLayer([28 28 3],'Name','input')
inputlayer =
    ImageInputLayer with properties:
                            Name: 'input'
                InputSize: [l28 28 3]
    Hyperparameters
        DataAugmentation: 'none'
            Normalization: 'zerocenter'
```

Include an image input layer in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer (5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers =
    7x1 Layer array with layers:
```

 1 '' Image Input \(28 \times 28 \times 1\) images with 'zerocenter' normalization
 2 '' Convolution \(205 \times 5\) convolutions with stride [1 1] and paddir
 - "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

References

[1] Krizhevsky, A., I. Sutskever, and G. E. Hinton. "ImageNet Classification with Deep Convolutional Neural Networks". Advances in Neural Information Processing Systems. Vol 25, 2012.
[2] Cireşan, D., U. Meier, J. Schmidhuber. "Multi-column Deep Neural Networks for Image Classification". IEEE Conference on Computer Vision and Pattern Recognition, 2012.

See Also
Convolution2dLayer | FullyConnectedLayer \| MaxPooling2dLayer | augmentedImageSource | trainNetwork

Topics

"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2016a

MaxPooling2DLayer

Max pooling layer

Description

A max pooling layer performs down-sampling by dividing the input into rectangular pooling regions, and computing the maximum of each region.

Creation

Syntax

```
layer = maxPooling2dLayer(poolSize)
layer = maxPooling2dLayer(poolSize,Name,Value)
```


Description

layer = maxPooling2dLayer(poolSize) creates a max pooling layer and sets the PoolSize property.
layer = maxPooling2dLayer(poolSize,Name, Value) sets the optional Stride, Name, and HasUnpoolingOutputs properties using name-value pairs. To specify input padding, use the ' Padding' name-value pair argument. For example, maxPooling2dLayer (2,'Stride',2) creates a max pooling layer with pool size [2 2] and stride [2 2]. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Input Arguments

Use comma-separated name-value pair arguments to specify the size of the padding to add along the edges of the layer input and to set the Stride, Name, and HasUnpoolingOutputs properties. Enclose names in single quotes.

Example: maxPooling2dLayer (2,'Stride', 2) creates a max pooling layer with pool size [2 2] and stride [2 2].

Padding — Padding to add to input edges

$\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$ (default) | vector of nonnegative integers | 'same'
Padding to add to input edges, specified as the comma-separated pair consisting of
' Padding ' and one of the following:

- 'same' - The software calculates the size of the padding at training time so that the output has the same size as the input when the stride equals 1 . If the stride is larger than 1, then the output size is ceil (inputSize/stride), where inputSize is the height or width of the input and stride is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, and to the left and right, if possible. If an odd amount of padding must be added vertically, then the software adds padding to the bottom. If an odd amount of padding must be added horizontally, then the software adds extra padding to the right.
- Nonnegative integer p - Add padding of size p to all the edges of the input.
- Vector [a b] of nonnegative integers - Add padding of size a to the top and bottom of the input and padding of size b to the left and right.
- Vector [t bllla of nonnegative integers - Add padding of size t to the top, b to the bottom, 1 to the left, and r to the right of the input.

Example: 'Padding', 1 adds one row of padding to the top and bottom, and one column of padding to the left and right of the input.

Example: 'Padding','same' adds padding so that the output has the same size as the input (if the stride equals 1).

Properties

PoolSize - Dimensions of pooling regions

vector of two positive integers
Dimensions of the pooling regions, specified as a vector of two positive integers [h w], where h is the height and w is the width. When creating the layer, you can specify PoolSize as a scalar to use the same value for both dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.

Example: [2 1] specifies pooling regions of height 2 and width 1.

Stride - Step size for traversing input

[1 1] (default) | vector of two positive integers
Step size for traversing the input vertically and horizontally, specified as a vector of two positive integers [$a \quad b$], where a is the vertical step size and b is the horizontal step size. When creating the layer, you can specify Stride as a scalar to use the same value for both dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.

Example: $\left[\begin{array}{ll}2 & 3\end{array}\right]$ specifies a vertical step size of 2 and a horizontal step size of 3 .

PaddingSize - Size of padding

$\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$ (default) | vector of four nonnegative integers
Size of padding to apply to input borders, specified as a vector of four nonnegative integers [$\mathrm{t} \mathrm{b} \quad \mathrm{l} \quad \mathrm{r}$], where t is the padding applied to the top, b is the padding applied to the bottom, l is the padding applied to the left, and r is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify padding.
Example: $\left[\begin{array}{llll}1 & 1 & 2 & 2\end{array}\right]$ adds one row of padding to the top and bottom, and two columns of padding to the left and right of the input.

PaddingMode - Method to determine padding size

'manual' (default) | 'same'
Method to determine padding size, specified as 'manual' or 'same'.

If you specify a scalar or vector of nonnegative integers as the 'Padding' value when creating a layer, then PaddingMode equals 'manual'.

If you specify 'same' as the 'Padding' value when creating a layer, then PaddingMode equals 'same'. The software calculates the size of the padding at training time so that the output has the same size as the input when the stride equals 1 . If the stride is larger than 1 , then the output size is ceil (inputSize/stride), where inputSize is the height or width of the input and stride is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, and to the left and right, if possible. If an odd amount of padding must be added vertically, then the software adds padding to the bottom. If an odd amount of padding must be added horizontally, then the software adds extra padding to the right.

Padding - Size of padding

```
[0 0] (default) | vector of two nonnegative integers
```

Note Padding property will be removed in a future release. Use PaddingSize instead. When you create a layer, use the 'Padding' name-value pair argument to specify padding.

Size of padding to apply to input borders vertically and horizontally, specified as a vector of two nonnegative integers [a b], where a is the padding applied to the top and bottom of the input data and b is the padding applied to the left and right.

Example: $\left[\begin{array}{ll}1 & 1\end{array}\right]$ adds one row of padding to the top and bottom, and one column of padding to the left and right of the input.

HasUnpoolingOutputs - Flag for outputs to unpooling layer

false (default) | true

Flag for outputs to unpooling layer, specified as true or false.
If the HasUnpoolingOutputs value equals false, then the max pooling layer has a single output with the name 'out'.

To use the output of a max pooling layer as the input to a max unpooling layer, set the HasUnpoolingOutputs value to true. In this case, the max pooling layer has two additional outputs that you can connect to a max unpooling layer:

- 'indices' - Indices of the maximum value in each pooled region.
- 'size' - Size of the input feature map.

To enable outputs to a max unpooling layer, the pooling regions of the max pooling layer must be nonoverlapping. For more information on how to unpool the output of a max pooling layer, see maxUnpooling2dLayer.

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Examples

Create Max Pooling Layer with Nonoverlapping Pooling Regions

Create a max pooling layer with nonoverlapping pooling regions.

```
layer = maxPooling2dLayer(2,'Stride',2)
layer =
    MaxPooling2DLayer with properties:
                            Name: ''
        HasUnpoolingOutputs: 0
        Hyperparameters
            PoolSize: [2 2]
                Stride: [2 2]
            PaddingMode: 'manual'
            PaddingSize: [0 0 0 0}
```

The height and the width of the rectangular regions (pool size) are both 2 . The pooling regions do not overlap because the step size for traversing the images vertically and horizontally (stride) is also [2 2].

Include a max pooling layer with nonoverlapping regions in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer (5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
```

layers =
7x1 Layer array with layers:

1	''	Image Input	28x28x1 images with 'zerocenter' normalization
2	''	Convolution	205×5 convolutions with stride [1 1] and paddir
3	''	ReLU	ReLU
4	''	Max Pooling	2 x 2 max pooling with stride [2 2] and padding
5	''	Fully Connected	10 fully connected layer
6	''	Softmax	softmax
7	''	Classification Output	crossentropyex

Create Max Pooling Layer with Overlapping Pooling Regions

Create a max pooling layer with overlapping pooling regions.

```
layer = maxPooling2dLayer([3 2],'Stride',2)
layer =
    MaxPooling2DLayer with properties:
                        Name: ''
        HasUnpoolingOutputs: 0
        Hyperparameters
            PoolSize: [3 2]
                            Stride: [2 2]
                            PaddingMode: 'manual'
                            PaddingSize: [0 0 0 0]
```

This layer creates pooling regions of size [32] and takes the maximum of the six elements in each region. The pooling regions overlap because there are stride dimensions Stride that are less than the respective pooling dimensions PoolSize.

Include a max pooling layer with overlapping pooling regions in a Layer array.

```
layers = [ ...
    imageInputLayer([[28 28 1])
    convolution2dLayer (5,20)
    reluLayer
    maxPooling2dLayer([3 2],'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers =
    7x1 Layer array with layers:
        '' Image Input 28x28x1 images with 'zerocenter' normalization
        '' Convolution 20 5x5 convolutions with stride [1 1] and paddir
            '' ReLU ReLU
            '' Max Pooling 3x2 max pooling with stride [2 2] and padding
            '' Fully Connected }10\mathrm{ fully connected layer
            '' Softmax softmax
            '' Classification Output crossentropyex
```

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

Definitions

Max Pooling Layer

A max pooling layer outputs the maximum values of rectangular regions of its input. The PoolSize property determines the size of the rectangular regions. For example, if PoolSize is [2,3], then the layer outputs the maximum value of regions of height 2 and width 3 . The layer scans through the input horizontally and vertically in step sizes specified by the Stride property. If the pooling region dimensions Poolsize are less than or equal to the stride dimensions Stride, then the pooling regions do not overlap.

Pooling layers perform down-sampling operations. The output size of a pooling layer with input size InputSize has dimensions (InputSize - PoolSize $+2 *$ PaddingSize)/Stride +1 . This value must be an integer for the whole image to be fully covered. If the combination
of these parameters does not lead the image to be fully covered, the software, by default, ignores the remaining part of the image along the right and bottom edges.

See Also
AveragePooling2dLayer | Convolution2dLayer | MaxUnpooling2dLayer

Topics

"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2016a

MaxUnpooling2DLayer

Max unpooling layer

Description

A max unpooling layer unpools the output of a max pooling layer.
There are three inputs to this layer:

- 'in' - Input feature map to unpool.
- 'indices' - Indices of the maximum value in each pooled region. This is output by the max pooling layer.
- 'size' - Output size of unpooled feature map. This is output by the max pooling layer.

Use the input names when connecting or disconnecting the max unpooling layer to other layers using connectLayers or disconnectLayers.

Creation

Syntax

```
layer = maxUnpooling2dLayer
layer = maxUnpooling2dLayer('Name',Name)
```


Description

layer = maxUnpooling2dLayer creates a max unpooling layer.
layer = maxUnpooling2dLayer('Name',Name) additionally specifies the layer name. To create a network containing a max unpooling layer you must specify a layer name.

Properties

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector.

Data Types: char

Examples

Create Max Unpooling Layer

Create a max unpooling layer that unpools the output of a max pooling layer.

```
layer = maxUnpooling2dLayer
layer =
    MaxUnpooling2DLayer with properties:
        Name: ''
```


Unpool Max Pooling Layer

Create a max pooling layer, and set the 'HasUnpoolingOutputs' property as true. This property gives the max pooling layer two additional outputs, 'indices ' and 'size', which will enable unpooling the layer. Also create a max unpooling layer.

```
layers = [
    maxPooling2dLayer(2,'Stride',2,'Name','mpool','HasUnpoolingOutputs',true)
    maxUnpooling2dLayer('Name','unpool');
]
layers =
    2x1 Layer array with layers:
        1 'mpool' Max Pooling M 2x2 max pooling with stride [2 2] and padding [0
```

Sequentially connect layers by adding them to a layerGraph. This step connects the ' out' output of the max pooling layer to the 'in' input of the max unpooling layer.

```
lgraph = layerGraph(layers)
lgraph =
    LayerGraph with properties:
            Layers: [2\times1 nnet.cnn.layer.Layer]
        Connections: [1\times2 table]
```

Unpool the output of the max pooling layer, by connecting the max pooling layer outputs to the max unpooling layer inputs.

```
lgraph = connectLayers(lgraph,'mpool/indices','unpool/indices');
lgraph = connectLayers(lgraph,'mpool/size','unpool/size');
```


See Also

MaxPooling2dLayer | connectLayers | disconnectLayers | layerGraph | trainNetwork

Topics

"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network" "Create and Train DAG Network for Deep Learning"

Introduced in R2017b

RegressionOutputLayer

Regression output layer

Description

A regression output layer holds the name of the loss function the software uses for training the network for regression, and the response names. To solve a regression problem, you must include a fully connected layer followed by a regression layer at the end of the network.

Creation

Create a regressoin output layer using regressionLayer.

Properties

LossFunction - Loss function for training

'mean-squared-error'
Loss function the software uses for training, specified as 'mean-squared-error'.

ResponseNames - Names of responses

\{ \} (default) | cell array
Names of the responses, specified as a cell array. If you do not specify the response names, the software initially specifies the default value $\}$, and automatically assigns the response names at training time.

Data Types: cell

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Examples

Create Regression Output Layer

Create a regression output layer with the name 'routput'.

```
layer = regressionLayer('Name','routput')
layer =
    RegressionOutputLayer with properties:
                            Name: 'routput'
        ResponseNames: {}
        Hyperparameters
        LossFunction: 'mean-squared-error'
```

The default loss function for regression is mean-squared-error.
Include a regression output layer in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer (12,25)
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer]
layers =
    5x1 Layer array with layers:
```

1	''	Image Input	$28 \times 28 \times 1$ images with 'zerocenter' normalization
2	''	Convolution	2512×12 convolutions with stride $\left[\begin{array}{ll}1 & 1] \text { and padding } \\ 3 & \text { '' } \\ 4 & \text { ReLU }\end{array}\right.$
5	''	Fully Connected	Regu

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

See Also

ClassificationOutputLayer | FullyConnectedLayer | trainNetwork

Topics
"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2017a

ReLULayer

Rectified Linear Unit (ReLU) layer

Description

A ReLU layer performs a threshold operation to each element of the input, where any value less than zero is set to zero.

This operation is equivalent to

$$
f(x)=\left\{\begin{array}{ll}
x, & x \geq 0 \\
0, & x<0
\end{array} .\right.
$$

Creation

Syntax

```
layer = reluLayer
layer = reluLayer('Name',Name)
```


Description

layer = reluLayer creates a ReLU layer.
layer = reluLayer('Name',Name) creates a ReLU layer and sets the optional Name property using a name-value pair. For example, reluLayer ('Name', 'relul') creates a ReLU layer with the name 'relul'. Enclose the property name in single quotes.

Properties

Name - Layer name

' ' (default) | character vector

Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Examples

Create ReLU Layer

Create a ReLU layer with the name 'relu1'.

```
layer = reluLayer('Name','relu1')
layer =
    ReLULayer with properties:
        Name: 'relu1'
```

Include a ReLU layer in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer (5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
```

layers =
7x1 Layer array with layers:

1	''	Image Input	28x28x1 images with 'zerocenter' normalization
2	''	Convolution	205×5 convolutions with stride [1 1] and paddir
3	''	ReLU	ReLU
4	''	Max Pooling	2x2 max pooling with stride [2 2] and padding
5	''	Fully Connected	10 fully connected layer
6	''	Softmax	softmax
7	''	Classification Output	crossentropyex

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

References

[1] Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted boltzmann machines." In Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807-814. 2010.

See Also
BatchNormalizationLayer | ClippedReLULayer | DropoutLayer |
ImageInputLayer | LeakyReLULayer | trainNetwork

Topics
"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2016a

LeakyReLULayer

Leaky Rectified Linear Unit (ReLU) layer

Description

A leaky ReLU layer performs a simple threshold operation, where any input value less than zero is multiplied by a fixed scalar.

This operation is equivalent to:

$$
f(x)=\left\{\begin{array}{ll}
x, & x \geq 0 \\
\text { scale }^{*} x, & x<0
\end{array} .\right.
$$

Creation

Syntax

```
layer = leakyReluLayer
layer = leakyReluLayer(scale)
layer = leakyReluLayer(
```

\qquad

``` ,'Name',Name)
```


Description

layer = leakyReluLayer returns a leaky ReLU layer.
layer = leakyReluLayer(scale) returns a leaky ReLU layer with a scalar multiplier for negative inputs equal to scale.
layer = leakyReluLayer(\qquad ,'Name', Name) returns a leaky ReLU layer and sets the optional Name property.

Properties

Scale - Scalar multiplier for negative input values

0.01 (default) | numeric scalar

Scalar multiplier for negative input values, specified as a numeric scalar.

Example: 0.4

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Examples

Create Leaky ReLU Layer

Create a leaky ReLU layer with the name 'leaky1' and a scalar multiplier for negative inputs equal to 0.1.

```
layer = leakyReluLayer(0.1,'Name','leaky1')
layer =
    LeakyReLULayer with properties:
```

 Name: 'leakyl'
 Hyperparameters
 Scale: 0.1000
 Include a leaky ReLU layer in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer (5,20)
    leakyReluLayer
```

```
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers =
    7x1 Layer array with layers:
```

1	''	Image Input	$28 \times 28 \times 1$ images with 'zerocenter' normalization
2	''	Convolution	205×5 convolutions with stride [1 1] and paddir
3	''	Leaky ReLu	Leaky ReLU with scale 0.01
4	''	Max Pooling	2x2 max pooling with stride [2 2] and padding [0
5	''	Fully Connected	10 fully connected layer
6	''	Softmax	softmax
7	''	Classification Output	crossentropyex

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

References

[1] Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. "Rectifier nonlinearities improve neural network acoustic models." In Proc. ICML, vol. 30, no. 1. 2013.

See Also

ClippedReLULayer \| ReLULayer

Topics

"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2017b

ClippedReLULayer

Clipped Rectified Linear Unit (ReLU) layer

Description

A clipped ReLU layer performs a simple threshold operation, where any input value less than zero is set to zero and any value above the clipping ceiling is set to that clipping ceiling.

This operation is equivalent to:
$f(x)= \begin{cases}0, & x<0 \\ x, & 0 \leq x<\text { ceiling } . \\ \text { ceiling }, & x \geq \text { ceiling }\end{cases}$

Creation

Syntax

```
layer = clippedReluLayer(ceiling)
layer = clippedReluLayer(ceiling,'Name',Name)
```


Description

layer = clippedReluLayer(ceiling) returns a clipped ReLU layer with the clipping ceiling equal to ceiling.
layer = clippedReluLayer(ceiling,'Name',Name) returns a clipped ReLU layer and sets the optional Name property.

Properties

Ceiling — Ceiling for input clipping

positive scalar

Ceiling for input clipping, specified as a positive scalar.

Example: 10

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Examples

Create Clipped ReLU Layer

Create a clipped ReLU layer with the name 'clip1' and the clipping ceiling equal to 10.

```
layer = clippedReluLayer(10,'Name','clip1')
layer =
    ClippedReLULayer with properties:
            Name: 'clip1'
    Hyperparameters
        Ceiling: 10
```

Include a clipped ReLU layer in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer (5,20)
    clippedReluLayer(10)
```

```
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers =
    7x1 Layer array with layers:
\begin{tabular}{llll}
1 & '' & Image Input & \(28 \times 28 \times 1\) images with 'zerocenter' normalization \\
2 & '' & Convolution & \(205 \times 5\) convolutions with stride \([1\) \\
3 & '' & Clipped ReLU and paddir \\
4 & '' & Max Pooling & Clipped ReLU with ceiling 10
\end{tabular}
```

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

References

[1] Hannun, Awni, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, et al. "Deep speech: Scaling up end-to-end speech recognition." Preprint, submitted 17 Dec 2014. http://arxiv.org/abs/1412.5567

See Also

LeakyReLULayer \| ReLULayer

Topics

"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2017b

BatchNormalizationLayer

Batch normalization layer

Description

A batch normalization layer normalizes each input channel across a mini-batch. The layer first normalizes the activations of each channel by subtracting the mini-batch mean and dividing by the mini-batch standard deviation. Then, the layer shifts the input by a learnable offset β and scales it by a learnable scale factor γ. Use batch normalization layers between convolutional layers and nonlinearities, such as ReLU layers, to speed up training of convolutional neural networks and reduce the sensitivity to network initialization.

Creation

Syntax

layer = batchNormalizationLayer
layer = batchNormalizationLayer(\qquad ,'Name',Value)

Description

layer = batchNormalizationLayer creates a batch normalization layer.
layer = batchNormalizationLayer(\qquad ,'Name',Value) creates a batch normalization layer and sets the properties Name, Epsilon, Offset, OffsetLearnRateFactor, OffsetL2Factor, "Scale" on page 1-0 , ScaleLearnRateFactor, and ScaleL2Factor using name-value pairs. For example, batchNormalizationLayer ('Name','BN1') creates a batch normalization layer with the name 'BN1'. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Properties

General Layer Properties

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

NumChannels - Number of input channels
'auto' (default) | positive integer
Number of input channels, specified as 'auto' or a positive integer.
This property is always equal to the number of channels of the input to the layer. If NumChannels equals 'auto', then the software infers the correct value for the number of channels at training time.

Epsilon - Constant to add to mini-batch variances

1e-5 (default) | numeric scalar
Constant to add to the mini-batch variances, specified as a numeric scalar equal to or larger than 1e-5.

The batch normalization layer adds this constant to the mini-batch variances before normalization to ensure numerical stability and avoid division by zero.

Properties for Learnable Parameters

Offset - Channel offsets

numeric array
Channel offsets β, specified as a numeric array of size 1-by-1-by-NumChannels.
The offsets are learnable parameters. When training a network, trainNetwork uses the Offset property as the initial value. If you do not specify an Offset value when creating a layer, then trainNetwork uses an array of all zeros as the initial value.

OffsetLearnRateFactor - Learning rate factor for offsets

1 (default) | nonnegative scalar
Learning rate factor for the offsets, specified as a nonnegative scalar.
The software multiplies this factor by the global learning rate to determine the learning rate for the offsets in a layer. For example, if OffsetLearnRateFactor equals 2 , then the learning rate for the offsets in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

OffsetL2Factor $-L_{2}$ regularization factor for offsets

1 (default) | nonnegative scalar
L_{2} regularization factor for the offsets, specified as a nonnegative scalar.
The software multiplies this factor by the global L_{2} regularization factor to determine the learning rate for the offsets in a layer. For example, if OffsetL2Factor is 2, then the L_{2} regularization for the offsets in the layer is twice the global L_{2} regularization factor. You can specify the global L_{2} regularization factor using the trainingOptions function.

Scale - Channel scale factors

numeric array
Channel scale factors γ, specified as a numeric array of size 1-by-1-by-NumChannels with positive elements.

The channel scale factors are learnable parameters. When training a network, trainNetwork uses the Scale property as the initial value. If you do not specify a Scale value when creating a layer, then trainNetwork uses an array of all ones as the initial value.

ScaleLearnRateFactor - Learning rate factor for scale factors

```
1 (default) | nonnegative scalar
```

Learning rate factor for the scale factors, specified as a nonnegative scalar.
The software multiplies this factor by the global learning rate to determine the learning rate for the scale factors in a layer. For example, if ScaleLearnRateFactor is 2 , then the learning rate for the scale factors in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

ScaleL2Factor $-L_{2}$ regularization factor for scale factors

1 (default) | nonnegative scalar
L_{2} regularization factor for the scale factors, specified as a nonnegative scalar.
The software multiplies this factor by the global L_{2} regularization factor to determine the learning rate for the scale factors in a layer. For example, if ScaleL2Factor is 2 , then the L_{2} regularization for the offsets in the layer is twice the global L_{2} regularization factor. You can specify the global L_{2} regularization factor using the trainingOptions function.

Properties Determined During Training

TrainedMean - Input mean

numeric array
Input mean of each channel, specified as a numeric array of size 1-by-1-by-NumChannels and determined during network training.

The layer uses TrainedMean (in place of the mini-batch mean) to normalize the input during prediction.

TrainedVariance - Input variance
numeric array
Input variance of each channel, specified as a numeric array of size 1-by-1-byNumChannels and determined during network training.

The layer uses TrainedVariance (in place of the mini-batch variance) to normalize the input during prediction.

Examples

Create Batch Normalization Layer

Create a batch normalization layer with the name 'BN1'.

```
layer = batchNormalizationLayer('Name','BN1')
```

```
layer =
    BatchNormalizationLayer with properties:
                    Name: 'BN1'
            NumChannels: 'auto'
            TrainedMean: []
        TrainedVariance: []
        Hyperparameters
            Epsilon: 1.0000e-05
        Learnable Parameters
            Offset: []
                        Scale: []
    Show all properties
```

Include batch normalization layers in a Layer array.

```
layers = [
    imageInputLayer([[32 32 3])
    convolution2dLayer(3,16,'Padding',1)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32,'Padding',1)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer
    ]
layers =
    11x1 Layer array with layers:
```

1	'' Image Input	$32 \times 32 \times 3$ images with 'zerocenter' normalization	
2	'' Convolution	163×3 convolutions with stride $[1 \quad 1]$ and paddin	
3	''	Batch Normalization	Batch normalization
4	''	ReLU	ReLU

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

Algorithms

A batch normalization normalizes its inputs x_{i} by first calculating the mean μ_{B} and variance $\sigma_{B}{ }^{2}$ over a mini-batch and over each input channel. Then, it calculates the normalized activations as

$$
\widehat{x_{i}}=\frac{x_{i}-\mu_{B}}{\sqrt{\sigma_{B}^{2}+}}
$$

Here, ϵ (the property Epsilon) improves numerical stability when the mini-batch variance is very small. To allow for the possibility that inputs with zero mean and unit variance are not optimal for the layer that follows the batch normalization layer, the batch normalization layer further shifts and scales the activations as

$$
y_{i}=\gamma \hat{x}_{i}+\beta .
$$

Here, the offset β and scale factor γ (Offset and Scale properties) are learnable parameters that are updated during network training.

When network training finishes, the batch normalization layer calculates the mean and variance over the full training set and stores them in the TrainedMean and TrainedVariance properties. When you use a trained network to make predictions on new images, the layer uses the trained mean and variance instead of the mini-batch mean and variance to normalize the activations.

References

[1] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." preprint, arXiv: 1502.03167 (2015).

See Also

Convolution2dLayer \| FullyConnectedLayer \| ReLULayer \| trainNetwork | trainingOptions

Topics

"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2017b

SoftmaxLayer

Softmax layer

Description

A softmax layer applies a softmax function to the input.

Creation

Syntax

```
layer = softmaxLayer
layer = softmaxLayer('Name',Name)
```


Description

layer $=$ softmaxLayer creates a softmax layer.
layer $=$ softmaxLayer('Name',Name) creates a softmax layer and sets the optional Name property using a name-value pair. For example, softmaxLayer ('Name','sm1') creates a softmax layer with the name 'sm1'. Enclose the property name in single quotes.

Properties

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Examples

Create Softmax Layer

Create a softmax layer with the name 'sm1'.

```
layer = softmaxLayer('Name','sm1')
```

layer =
SoftmaxLayer with properties:
Name: 'sm1'

Include a softmax layer in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer (5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
```

layers =
7x1 Layer array with layers:

1	''	Image Input	28x28x1 images with 'zerocenter' normalization
2	'	Convolution	205×5 convolutions with stride [1 1] and paddir
3	'	ReLu	ReLU
4	''	Max Pooling	2 x 2 max pooling with stride [2 2] and padding
5	''	Fully Connected	10 fully connected layer
6	''	Softmax	softmax
7	''	Classification Output	crossentropyex

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

Definitions

Softmax Function

For a classification problem with more than two classes, the output unit activation function is the softmax function:

$$
P\left(c_{r} \mid \boldsymbol{x}, \boldsymbol{\theta}\right)=\frac{P\left(\boldsymbol{x}, \boldsymbol{\theta} \mid c_{r}\right) P\left(c_{r}\right)}{\sum_{j=1}^{k} P\left(\boldsymbol{x}, \boldsymbol{\theta} \mid c_{j}\right) P\left(c_{j}\right)}=\frac{\exp \left(a_{r}(\boldsymbol{x}, \boldsymbol{\theta})\right)}{\sum_{j=1}^{k} \exp \left(a_{j}(\boldsymbol{x}, \theta)\right)},
$$

where $0 \leq P\left(c_{r} \mid \boldsymbol{x}, \theta\right) \leq 1$ and $\sum_{j=1}^{k} P\left(c_{j} \mid \boldsymbol{x}, \theta\right)=1$. Also, $a_{r}=\ln \left(P\left(\boldsymbol{x}, \theta \mid c_{r}\right) P\left(c_{r}\right)\right)$,
$P\left(\boldsymbol{x}, \boldsymbol{\theta} \mid c_{r}\right)$ is the conditional probability of the sample given class r, and $P\left(c_{r}\right)$ is the class prior probability.

The softmax function is also known as the normalized exponential and can be considered the multi-class generalization of the logistic sigmoid function [1].

References

[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

See Also

ClassificationOutputLayer | Convolution2dLayer | FullyConnectedLayer | trainNetwork

Topics

"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2016a

LSTMLayer

Long short-term memory (LSTM) layer

Description

An LSTM layer is a recurrent neural network (RNN) layer that enables support for time series and sequence data in a network. The layer performs additive interactions, which can help improve gradient flow over long sequences during training.

Creation

Syntax

```
layer = lstmLayer(outputSize)
layer = lstmLayer(
```

\qquad

``` ,Name,Value)
```


Description

layer = lstmLayer(outputSize) creates an LSTM layer and specifies the OutputSize property.
layer = lstmLayer(\qquad ,Name, Value) creates a LSTM layer and specifies additional "LSTM Parameters" on page 1-836, "Learn Rate and L2 Factors" on page 1837, and "State Parameters" on page 1-839 using one or more name-value pairs.

Properties

LSTM Parameters

Name - Layer name

' ' (default) | character vector

Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char
InputSize- Input size
'auto' (default) | positive integer
Input size, specified as a positive integer or 'auto'. If InputSize is 'auto', then the software automatically assigns the input size at training time.

Example: 100

OutputSize - Output size
 positive integer

Output size, specified as a positive integer.
Example: 100

OutputMode - Format of output

'sequence' (default) | 'last'
Format of output, specified as one of the following:

- 'sequence' - Output the complete sequence.
- 'last' - Output the last time step of the sequence.

Example: last

Learn Rate and L2 Factors

BiasLearnRateFactor - Learning rate factor for biases

1 (default) | nonnegative scalar
Learning rate factor for the biases, specified as a nonnegative scalar.
The software multiplies this factor by the global learning rate to determine the learning rate for the biases in the layer. For example, if BiasLearnRateFactor is 2 , then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

Example: 2

BiasL2Factor - L2 regularization factor for biases

nonnegative scalar
L2 regularization factor for the biases, specified as a nonnegative scalar.
The software multiplies this factor by the global L2 regularization factor to determine the learning rate for the biases in the layer. For example, if BiasL2Factor is 2, then the L 2 regularization for the biases in the layer is twice the global L 2 regularization factor. You can specify the global L2 regularization factor using the trainingoptions function.

Example: 2

```
InputWeightsLearnRateFactor - Learning rate factor for input weights
1 (default) | numeric scalar | 1-by-4 numeric vector
```

Learning rate factor for the input weights, specified as a numeric scalar or a 1-by-4 numeric vector.

Example: 0.1

```
InputWeightsL2Factor - L2 regularization factor for input weights
1 (default) | numeric scalar | 1-by-4 numeric vector
```

L2 regularization factor for the input weights, specified as a numeric scalar or a 1-by-4 numeric vector.

Example: 0.1

RecurrentWeightsLearnRateFactor — Learning rate factor for recurrent weights

1 (default) | numeric scalar | 1-by-4 numeric vector
Learning rate factor for the recurrent weights, specified as a numeric scalar or a 1-by-4 numeric vector.

Example: 0.1
RecurrentWeightsL2Factor - L2 regularization factor for recurrent weights
1 (default) | numeric scalar | 1-by-4 numeric vector
L2 regularization factor for the recurrent weights, specified as a numeric scalar or a 1-by-4 numeric vector.

Example: 0.1

State Parameters

CellState - Initial value of cell state
numeric vector
Initial value of the cell state, specified as an OutputSize-by-1 numeric vector.

OutputState - Initial value of the output state

numeric vector
Initial value of the output state, specified as an OutputSize-by-1 numeric vector.

Weights

Bias - Layer biases

numeric vector
Layer biases for the LSTM layer, specified as a $4 *$ OutputSize-by- 1 numeric vector.

InputWeights - Input weights

matrix

Input weights, specified as a $4 *$ OutputSize-by-InputSize matrix. The input weight matrix is a vertical concatenation of the four gate input weight matrices in the forward pass of an LSTM network. These individual matrices are concatenated in the following order: input gate, forget gate, layer input, and output gate.

RecurrentWeights - Recurrent weights

matrix
Recurrent weights, specified as a $4 *$ OutputSize-by-OutputSize matrix. The recurrent weight matrix is a vertical concatenation of the four gate recurrent weight matrices in the forward pass of an LSTM network. These individual matrices are concatenated in the following order: input gate, forget gate, layer input, and output gate.

Examples

Create LSTM Layer

Create an LSTM layer with the name 'lstm1' and an input size of 12 .
layer = lstmLayer(12,'Name','lstm1')
layer =
LSTMLayer with properties:

Name: 'lstm1'

Hyperparameters
InputSize: 'auto'
OutputSize: 12
OutputMode: 'sequence'

Learnable Parameters
InputWeights: []
RecurrentWeights: []
Bias: []

State Parameters
OutputState: []
CellState: []

Show all properties

Include an LSTM layer in a Layer array.

```
layers = [ ...
    sequenceInputLayer(12)
    lstmLayer(100,'OutputMode','last')
    fullyConnectedLayer(9)
    softmaxLayer
    classificationLayer]
layers
    5x1 Layer array with layers:
\begin{tabular}{llll}
1 & \(' '\) & Sequence Input & Sequence input with 12 dimensions \\
2 & '' & LSTM & LSTM with 100 hidden units \\
3 & \(' '\) & Fully Connected & 9 fully connected layer \\
4 & \(' '\) & Softmax & Softmax \\
5 & \(' '\) & Classification Output & crossentropyex
\end{tabular}
```


Construct and Train an LSTM Network

Load the Japanese Vowels dataset as described in [1] and [2]. x is a cell array containing 270 sequences of dimension 12 of varying length. Y is a categorical vector of labels "1","2",...,"9".
load JapaneseVowelsTrain
The entries in X are matrices with 12 rows (one row for each feature) and varying number of columns (one column for each time step). Visualize the first time series in a plot. Each subplot corresponds to a feature.

```
figure
for i = 1:12
    subplot(12,1,13-i)
    plot(X{1}(i,:));
    ylabel(i)
    xticklabels('')
    yticklabels('')
    box off
end
title("Training Observation 1")
subplot(12,1,12)
xticklabels('auto')
xlabel("Time Step")
```


Define the LSTM network architecture. Specify the inputs size to be sequences of size 12 (the dimension of the input data). Specify an LSTM layer to have output size of 100 and output the last element of the sequence. Finally, specify that there are 9 classes by including a fully connected layer of size 9 , followed by a softmax layer and a classification layer.

```
inputSize = 12;
outputSize = 100;
outputMode = 'last';
numClasses = 9;
layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(outputSize,'OutputMode',outputMode)
    fullyConnectedLayer(numClasses)
```

```
softmaxLayer
classificationLayer]
```


layers =

5x1 Layer array with layers:

1	''	Sequence Input	Sequence input with 12 dimensions
2	''	LSTM	LSTM with 100 hidden units
3	$' '$	Fully Connected	9 fully connected layer
4	$' '$	Softmax	Softmax
5	''	Classification Output	crossentropyex

Specify the training options. Choose mini-batch size of 27 and set the maximum number of epochs to 150 .

```
maxEpochs = 150;
miniBatchSize = 27;
options = trainingOptions('sgdm', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize);
```

Train the LSTM network with the specified training options using trainNetwork.

Load the test set and classify the sequences into speakers.
load JapaneseVowelsTest
Classify the test data. Set the mini-batch size to 27 .

```
miniBatchSize = 27;
YPred = classify(net,XTest, ...
    'MiniBatchSize',miniBatchSize);
```

Calculate the classification accuracy of the predictions.

```
acc = sum(YPred == YTest)./numel(YTest)
acc = 0.8892
```

- "Classify Sequence Data Using LSTM Networks"
- "Long Short-Term Memory Networks"
- "Specify Layers of Convolutional Neural Network"
- "Set Up Parameters and Train Convolutional Neural Network"
- "Deep Learning in MATLAB"

References

[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-Through Regions." Pattern Recognition Letters. Vol. 20, No. 11-13, pages 1103-1111.
[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https:// archive.ics.uci.edu/ml/datasets/Japanese+Vowels

See Also

classifyAndUpdateState | predictAndUpdateState | resetState | sequenceInputLayer

Topics

"Classify Sequence Data Using LSTM Networks"
"Long Short-Term Memory Networks"
"Specify Layers of Convolutional Neural Network"
"Set Up Parameters and Train Convolutional Neural Network"
"Deep Learning in MATLAB"

Introduced in R2017b

SequenceInputLayer

Sequence input layer

Description

A sequence input layer inputs sequence data to a network.

Creation

Syntax

layer = sequenceInputLayer(inputSize)
layer = sequenceInputLayer(inputSize,'Name',Name)

Description

layer = sequenceInputLayer(inputSize) creates a sequence input layer and sets the InputSize property.
layer = sequenceInputLayer(inputSize,'Name',Name) creates a sequence input layer and sets the optional Name property.

Properties

InputSize - Size of input

positive integer
Size of the input, specified as a positive integer. inputSize is the number of dimensions of the input sequence at each time step.

Example: 100

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector. If Name is set to ' ', then the software automatically assigns a name at training time.

Data Types: char

Examples

Create Sequence Input Layer

Create a sequence input layer with the name 'seq1' and an input size of 12 .

```
layer = sequenceInputLayer(12,'Name','seq1')
layer =
    SequenceInputLayer with properties:
            Name: 'seq1'
        InputSize: 12
```

Inlude an LSTM layer in a Layer array.

```
layers = [ ...
    sequenceInputLayer(12)
    lstmLayer(100,'OutputMode','last')
    fullyConnectedLayer(9)
    softmaxLayer
    classificationLayer]
layers =
    5x1 Layer array with layers:
        1 '' Sequence Input
        2 '' LSTM
        3 '' Fully Connected
            '' Softmax
        5 '' Classification Output crossentropyex
```


Construct and Train an LSTM Network

Load the Japanese Vowels dataset as described in [1] and [2]. X is a cell array containing 270 sequences of dimension 12 of varying length. Y is a categorical vector of labels "1","2",...,"9".
load JapaneseVowelsTrain
The entries in X are matrices with 12 rows (one row for each feature) and varying number of columns (one column for each time step). Visualize the first time series in a plot. Each subplot corresponds to a feature.

```
figure
for i = 1:12
    subplot(12,1,13-i)
    plot(X{1}(i,:));
    ylabel(i)
    xticklabels('')
    yticklabels('')
    box off
end
title("Training Observation 1")
subplot(12,1,12)
xticklabels('auto')
xlabel("Time Step")
```


Define the LSTM network architecture. Specify the inputs size to be sequences of size 12 (the dimension of the input data). Specify an LSTM layer to have output size of 100 and output the last element of the sequence. Finally, specify that there are 9 classes by including a fully connected layer of size 9 , followed by a softmax layer and a classification layer.

```
inputSize = 12;
outputSize = 100;
outputMode = 'last';
numClasses = 9;
layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(outputSize,'OutputMode',outputMode)
    fullyConnectedLayer(numClasses)
```

```
softmaxLayer
classificationLayer]
```

layers =
5x1 Layer array with layers:

1	''	Sequence Input	Sequence input with 12 dimensions
2	''	LSTM	LSTM with 100 hidden units
3	$' '$	Fully Connected	9 fully connected layer
4	''	Softmax	Softmax
5	''	Classification Output	crossentropyex

Specify the training options. Choose mini-batch size of 27 and set the maximum number of epochs to 150 .

```
maxEpochs = 150;
miniBatchSize = 27;
options = trainingOptions('sgdm', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize);
```

Train the LSTM network with the specified training options using trainNetwork.

```
net = trainNetwork(X,Y,layers,options);
Training on single GPU.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Epoch & Iteration & Time Elapsed (seconds) & Mini-batch
Loss & Mini-batch Accuracy & Base Learr Rate \\
\hline 1 & 1 & 0.14 & 2.1972 & 7.41\% & 0.01 \\
\hline 5 & 50 & 7.88 & 2.1972 & 11.11\% & 0.01 \\
\hline 10 & 100 & 15.68 & 2.1967 & 14.81\% & 0.01 \\
\hline 15 & 150 & 23.43 & 2.1961 & 14.81\% & 0.01 \\
\hline 20 & 200 & 31.09 & 2.1951 & 22.22\% & 0.01 \\
\hline 25 & 250 & 38.62 & 2.1936 & 22.22\% & 0.01 \\
\hline 30 & 300 & 46.28 & 2.1909 & 22.22\% & 0.01 \\
\hline 35 & 350 & 53.98 & 2.1862 & 29.63\% & 0.01 \\
\hline 40 & 400 & 61.72 & 2.1767 & 29.63\% & 0.01 \\
\hline 45 & 450 & 69.31 & 2.1541 & 25.93\% & 0.01 \\
\hline 50 & 500 & 77.09 & 2.0688 & 33.33\% & 0.01 \\
\hline 55 & 550 & 84.82 & 1.7619 & 25.93\% & 0.01 \\
\hline 60 & 600 & 92.41 & 1.6602 & 33.33\% & 0.01 \\
\hline 65 & 650 & 100.15 & 1.5891 & 33.33\% & 0.01 \\
\hline 70 & 700 & 108.15 & 1.5246 & 29.63\% & 0.01 \\
\hline
\end{tabular}
```


Load the test set and classify the sequences into speakers.
load JapaneseVowelsTest
Classify the test data. Set the mini-batch size to 27 .

```
miniBatchSize = 27;
YPred = classify(net,XTest, ...
    'MiniBatchSize',miniBatchSize);
```

Calculate the classification accuracy of the predictions.

```
acc = sum(YPred == YTest)./numel(YTest)
acc}=0.889
```

- "Classify Sequence Data Using LSTM Networks"
- "Long Short-Term Memory Networks"
- "Specify Layers of Convolutional Neural Network"
- "Set Up Parameters and Train Convolutional Neural Network"
- "Deep Learning in MATLAB"

References

[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-Through Regions." Pattern Recognition Letters. Vol. 20, No. 11-13, pages 1103-1111.
[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https:// archive.ics.uci.edu/ml/datasets/Japanese+Vowels

See Also

classifyAndUpdateState | lstmLayer| predictAndUpdateState| resetState

Topics
"Classify Sequence Data Using LSTM Networks"
"Long Short-Term Memory Networks"
"Specify Layers of Convolutional Neural Network"
"Set Up Parameters and Train Convolutional Neural Network"
"Deep Learning in MATLAB"

Introduced in R2017b

Layer

Network layer for deep learning

Description

Layers that define the architecture of neural networks for deep learning.

Creation

To specify the architecture of a neural network with all layers connected sequentially, create an array of layers directly. To specify the architecture of a network where layers can have multiple inputs or outputs, use a LayerGraph object. Use the following functions to create different layer types.

Layer Type	Function
Image input layer	imageInputLayer
Sequence input layer	sequenceInputLayer
2-D convolutional layer	convolution2dLayer
2-D transposed convolutional layer	transposedConv2dLayer
Fully connected layer	fullyConnectedLayer
Long short-term memory (LSTM) layer	LSTMLayer
Rectified linear unit (ReLU) layer	reluLayer
Leaky rectified linear unit (ReLU) layer	leakyReluLayer
Clipped rectified linear unit (ReLU) layer	clippedReluLayer
Batch normalization layer	batchNormalizationLayer

Layer Type	Function
Channel-wise local response normalization (LRN) layer	crossChannelNormalizationLayer
Dropout layer	dropoutLayer
Addition layer	additionLayer
Depth concatenation layer	depthConcatenationLayer
Average pooling layer	averagePooling2dLayer
Max pooling layer	maxPooling2dLayer
Max unpooling layer	maxUnpooling2dLayer
Softmax layer	softmaxLayer
Classification layer	classificationLayer
Regression layer	regressionLayer

For an example showing how to create a layer array, see "Construct Network Architecture" on page 1-854.

Alternatively, you can import layers from Caffe using importCaffeLayers.

Object Functions

trainNetwork Train neural network for deep learning

Examples

Construct Network Architecture

Define a convolutional neural network architecture for classification with one convolutional layer, a ReLU layer, and a fully connected layer.

```
layers = [ ...
    imageInputLayer([[28 28 3])
    convolution2dLayer([5 5],10)
    reluLayer
    fullyConnectedLayer(10)
```

```
    softmaxLayer
    classificationLayer]
```

layers =
6x1 Layer array with layers:

1	$' '$	Image Input	$28 \times 28 \times 3$ images with 'zerocenter' normalization
2	$' '$	Convolution	105×5 convolutions with stride $[1]$ and paddir
3	''	ReLU	ReLU
4	$' '$	Fully Connected	10 fully connected layer
5	$' '$	Softmax	softmax
6	$' '$	Classification Output	crossentropyex

layers is a Layer object.
Alternatively, you can create the layers individually and then concatenate them.

```
input = imageInputLayer([28 28 3]);
conv = convolution2dLayer([5 5],10);
relu = reluLayer;
fc = fullyConnectedLayer(10);
sm = softmaxLayer;
co = classificationLayer;
layers = [ ...
    input
    conv
    relu
    fc
    sm
    co]
layers =
    6x1 Layer array with layers:
\begin{tabular}{llll}
1 & \(' '\) & Image Input & \(28 \times 28 \times 3\) images with 'zerocenter' normalization \\
2 & '' & Convolution & \(105 \times 5\) convolutions with stride \(\left[\begin{array}{ll}1 & 1]\end{array}\right]\) and paddir \\
3 & '' & ReLU & ReLU \\
4 & \(' '\) & Fully Connected & 10 fully connected layer \\
5 & \(' '\) & Softmax & softmax \\
6 & \(' '\) & Classification Output & crossentropyex
\end{tabular}
```


Access Layers and Properties in Layer Array

Define a convolutional neural network architecture for classification with one convolutional layer, a ReLU layer, and a fully connected layer.

```
layers = [ ...
    imageInputLayer([[28 28 3])
    convolution2dLayer([5 5],10)
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];
```

Display the image input layer by selecting the first layer.

```
layers(1)
```

ans =
ImageInputLayer with properties:
Name: '
InputSize: [lll 28 38
Hyperparameters
DataAugmentation: 'none'
Normalization: 'zerocenter'

View the input size of the image input layer.
layers(1).InputSize
ans =

28283

Display the stride for the convolutional layer.
layers(2).Stride
ans =
$1 \quad 1$

Access the bias learn rate factor for the fully connected layer.

```
layers(4).BiasLearnRateFactor
```

ans $=1$

Create Typical Convolutional Neural Networks

Create typical convolutional neural networks for classification and regression problems.

Create a Convolutional Neural Network for Classification

Input Layer

Create the input layer. Assume that the input images are grayscale with size 28-by-28. Create an image input layer of size 28 -by- 28 -by- 1 .

```
inputLayer = imageInputLayer([28 28 1]);
```


Middle Layers

Create the middle layers of the network. First, create a convolutional layer with twelve 4 -by-3 filters, a ReLU layer, a local response normalization layer, and a max pooling layer with 2 -by- 2 nonoverlapping pooling regions.

```
middleLayers = [...
    convolution2dLayer([4 3],12)
    reluLayer
    crossChannelNormalizationLayer(4)
    maxPooling2dLayer(2,'Stride',2)];
```

Add a convolutional layer with sixteen 5-by-5 filters, a ReLU layer, a local response normalization layer, and a max pooling with 2 -by- 2 nonoverlapping pooling regions.

```
middleLayers = [...
    middleLayers
    convolution2dLayer (5,16)
    reluLayer
    crossChannelNormalizationLayer(4)
    maxPooling2dLayer(2,'Stride',2)];
```

Add a fully connected layer of size 256 , and add a ReLU layer.

```
middleLayers = [...
    middleLayers
    fullyConnectedLayer(256)
    reluLayer];
```


Final Layers

Construct the final layers of the network. Assume that there are 10 classes. Create a fully connected layer of size 10 followed by a softmax layer and a classification layer.

```
finalLayers = [...
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];
```

Combine the input, middle, and final layers to create the network architecture.

```
layers = [...
    inputLayer
    middleLayers
    finalLayers];
```

Alternatively, create the full network at once.

```
layers = [...
    imageInputLayer([[28 28 1])
    convolution2dLayer([4 3],12)
    reluLayer
    crossChannelNormalizationLayer(4)
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(5,16)
    reluLayer
    crossChannelNormalizationLayer(4)
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(256)
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];
```


Create a Convolutional Neural Network for Regression

Create a convolutional neural network for regression using a similar architecture as the classification network. Replace the final three layers with a fully connected layer of size 1 and a regression layer.

```
layers = [...
    imageInputLayer([28 28 1])
    convolution2dLayer([4 3],12)
    reluLayer
    crossChannelNormalizationLayer(4)
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer (5,16)
    reluLayer
    crossChannelNormalizationLayer(4)
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(256)
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer];
```

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"

See Also

DAGNetwork | LayerGraph | averagePooling2dLayer |
batchNormalizationLayer | classificationLayer | clippedReluLayer |
convolution2dLayer | crossChannelNormalizationLayer \| dropoutLayer |
fullyConnectedLayer | imageInputLayer | importCaffeLayers |
leakyReluLayer \| maxPooling2dLayer | maxUnpooling2dLayer |
regressionLayer \| reluLayer \| softmaxLayer \| trainNetwork

Topics

"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"

Introduced in R2016a

SeriesNetwork

Series network for deep learning

Description

A series network is a neural network for deep learning with layers arranged one after the other. It has a single input layer and a single output layer.

Creation

There are several ways to create a SeriesNetwork:

- Load a pretrained network using alexnet, vgg16, or vgg19. For an example, see "Load Pretrained AlexNet Convolutional Neural Network" on page 1-861.
- Import a pretrained network from Caffe using importCaffeNetwork. For an example, see "Import Caffe Network" on page 1-734.
- Train or fine-tune a network using trainNetwork. For an example, see "Construct and Train Convolutional Neural Network for Classification" on page 1-863.

Properties

Layers — Network layers
Layer array
Network layers, specified as a Layer array.

Object Functions

activations
classify
predict

Compute convolutional neural network layer activations Classify data using a trained deep learning neural network Predict responses using a trained deep learning neural network

predictAndUpdateState	Predict responses using a trained recurrent neural network and update the network state
classifyAndUpdateState	Classify data using a trained recurrent neural network and update the network state
resetState	Reset the state of a recurrent neural network

Examples

Load Pretrained AlexNet Convolutional Neural Network

Load a pretrained AlexNet convolutional neural network and examine the layers and classes.

Load the pretrained AlexNet network using alexnet. The output net is a SeriesNetwork object.
net $=$ alexnet
net $=$

SeriesNetwork with properties:

Layers: [25×1 nnet.cnn.layer.Layer]

Using the Layers property, view the network architecture. The network comprises of 25 layers. There are 8 layers with learnable weights: 5 convolutional layers, and 3 fully connected layers.

```
net.Layers
ans =
    25x1 Layer array with layers:
    1 'data' Image Input 227x227x3 images with 'zerocenter'
    2 'conv1' Convolution 96 11x11x3 convolutions with stride
    3 'relu1' ReLU ReLU
    4 'norml' Cross Channel Normalization cross channel normalization with 5 ch
```

```
'pool1' Max Pooling
'conv2' Convolution
'relu2' ReLU
'norm2' Cross Channel Normalization
'pool2' Max Pooling
'conv3' Convolution
'relu3' ReLU
'conv4' Convolution
'relu4' ReLU
'conv5' Convolution
'relu5' ReLU
'pool5' Max Pooling
'fc6' Fully Connected
'relu6' ReLU
'drop6' Dropout
'fc7' Fully Connected
'relu7' ReLU
'drop7' Dropout
'fc8' Fully Connected
'prob' Softmax
'output' Classification Output
```

23 'fc8'

```
3x3 max pooling with stride [2 2] an
256 5x5x48 convolutions with stride
ReLU
cross channel normalization with 5
3x3 max pooling with stride [2 2] ar
3 8 4 ~ 3 \times 3 \times 2 5 6 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~
ReLU
3 8 4 ~ 3 x 3 x 1 9 2 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e
ReLU
2 5 6 ~ 3 \times 3 \times 1 9 2 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e
ReLU
3x3 max pooling with stride [2 2] ar
4096 fully connected layer
ReLU
50% dropout
4096 fully connected layer
ReLU
50% dropout
1000 fully connected layer
softmax
crossentropyex with 'tench', 'goldfis
```

You can view the names of the classes learned by the network by viewing the ClassNames property of the classification output layer (the final layer). View the first 10 classes by selecting the first 10 elements.

```
net.Layers(end).ClassNames(1:10)
ans =
    1\times10 cell array
    Columns 1 through 4
        'tench' 'goldfish' 'great white shark' 'tiger shark'
    Columns 5 through 9
        'hammerhead' 'electric ray' 'stingray' 'cock' 'hen'
    Column 10
```

```
ostrich'
```


Import Layers from Caffe Network

Specify the example file 'digitsnet. prototxt' to import.

```
protofile = 'digitsnet.prototxt';
```

Import the network layers.

```
layers = importCaffeLayers(protofile)
layers =
    1x7 Layer array with layers:
```

1	'testdata'	Image Input	28x28x1 images
2	'conv1'	Convolution	$205 \times 5 \times 1$ convolutions with stride [1 1]
3	'relul'	ReLU	ReLU
4	'pool1'	Max Pooling	2×2 max pooling with stride [2 2] and
5	'ip1'	Fully Connected	10 fully connected layer
6	'loss'	Softmax	softmax
7	'output'	Classification Output	crossentropyex with 'class1', 'class2',

Construct and Train Convolutional Neural Network for Classification

Create a convolutional neural network for classification.
Load the sample data.

```
[XTrain,TTrain] = digitTrain4DArrayData;
```

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-by- 5000 array, where 28 is the height and 28 is the width of the images. The number of channels is 1 , and the number of synthetic images of handwritten digits is 5000. TTrain is a categorical vector containing the labels for each observation.

Construct the convolutional neural network architecture.

```
layers = [...
    imageInputLayer([[28 28 1])
```

```
convolution2dLayer (5,20)
reluLayer
maxPooling2dLayer(2,'Stride',2)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
```

Set the options to the default settings for the stochastic gradient descent with momentum. Set 'Verbose' to false to suppress detailed output on the training progress.

```
options = trainingOptions('sgdm','Verbose',false);
```

Train the network.

```
net = trainNetwork(XTrain,TTrain,layers,options);
```

Run the trained network on a test set and predict the image labels (digits).

```
[XTest,TTest] = digitTest4DArrayData;
YTest = classify(net,XTest);
```

Calculate the accuracy.

```
accuracy = sum(YTest==TTest)/numel(TTest)
accuracy = 0.9770
```

- "Create Simple Deep Learning Network for Classification"
- "Train a Convolutional Neural Network for Regression"
- "Classify Sequence Data Using LSTM Networks"

See Also

DAGNetwork | alexnet | importCaffeNetwork \| trainNetwork |
trainingOptions | vgg16| vgg19

Topics

"Create Simple Deep Learning Network for Classification"
"Train a Convolutional Neural Network for Regression" "Classify Sequence Data Using LSTM Networks"

"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"
"Define New Deep Learning Layers"
"Long Short-Term Memory Networks"

Introduced in R2016a

TrainingOptionsSGDM

Training options for stochastic gradient descent with momentum

Description

Training options for stochastic gradient descent with momentum, including learning rate information, L_{2} regularization factor, and mini-batch size.

Creation

Create a TrainingOptionsSGDM object using trainingOptions.

Properties

Plots - Plots to display during network training

'none' | 'training-progress'
Plots to display during network training, specified as one of the following:

- 'none' - Do not display plots during training.
- 'training-progress'- Plot training progress. The plot shows mini-batch loss and accuracy, validation loss and accuracy, and additional information on the training progress. The plot has a stop button (in the top-right corner. Click the button to stop training and return the current state of the network.

CheckpointPath — Path for saving checkpoint networks

character vector
Path where checkpoint networks are saved, specified as a character vector.
Data Types: char
ExecutionEnvironment - Hardware resource for training network
'auto' | 'cpu' | 'gpu' | 'multi-gpu' | 'parallel'

Hardware resource for training network, specified as one of the following:

- 'auto' - Use a GPU if one is available. Otherwise, use the CPU.
- 'cpu' - Use the CPU.
- 'gpu' - Use the GPU.
- 'multi-gpu' - Use multiple GPUs on one machine, using a local parallel pool. If no pool is already open, then the software opens one with one worker per supported GPU device.
- 'parallel' - Use a local parallel pool or compute cluster. If no pool is already open, then the software opens one using the default cluster profile. If the pool has access to GPUs, then the software uses them and leaves excess workers idle. If the pool does not have GPUs, then the training takes place on all cluster CPUs.

GPU, multi-GPU, and parallel options require Parallel Computing Toolbox.To use a GPU, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If you choose one of these options and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.

To see an improvement in performance when training in parallel, try increasing MiniBatchSize to offset the communication overhead.

To train directed acyclic graph (DAG) or long short-term memory (LSTM) networks, the hardware resource must be 'auto', 'cpu', or 'gpu'.

Data Types: char

InitialLearnRate - Initial learning rate

positive scalar
Initial learning rate used for training, specified as a positive scalar. If the learning rate is too low, then training takes a long time. If the learning rate is too high, then training might reach a suboptimal result.

LearnRateScheduleSettings - Settings for learning rate schedule

structure
Settings for the learning rate schedule, specified as a structure. LearnRateScheduleSettings has the field Method, which specifies the type of method for adjusting the learning rate. The possible methods are:

- 'none' - The learning rate is constant throughout training.
- 'piecewise' - The learning rate drops periodically during training.

If Method is 'piecewise', then LearnRateScheduleSettings contains two more fields:

- DropRateFactor - The multiplicative factor by which the learning rate drops during training
- DropPeriod - The number of epochs that passes between adjustments to the learning rate during training

Data Types: struct

L2Regularization - Factor for L_{2} regularizer

nonnegative scalar
Factor for L_{2} regularizer (weight decay), specified as a nonnegative scalar.
You can specify a multiplier for the L_{2} regularizer for network layers with learnable parameters.

MaxEpochs - Maximum number of epochs

positive integer

Maximum number of epochs to use for training, specified as a positive integer.
An iteration is one step taken in the gradient descent algorithm towards minimizing the loss function using a mini-batch. An epoch is the full pass of the training algorithm over the entire training set.

MiniBatchSize - Size of mini-batch
 positive integer

Size of the mini-batch to use for each training iteration, specified as a positive integer. A mini-batch is a subset of the training set that is used to evaluate the gradient of the loss function and update the weights.

Momentum - Contribution of previous gradient step

a scalar value from 0 to 1
Contribution of the gradient step from the previous iteration to the current iteration of the training, specified as a scalar value from 0 to 1 . A value of 0 means no contribution
from the previous step, whereas a value of 1 means maximal contribution from the previous step.

SequenceLength - Option to pad or truncate sequences

```
'longest' | 'shortest' | positive integer
```

Option to pad, truncate, or split input sequences, specified as one of the following:

- 'longest ' - Pad sequences in the each mini-batch to have the same length as the longest sequence.
- 'shortest' - Truncate sequences in each mini-batch to have the same length as the shortest sequence.
- Positive integer - Pad sequences in each mini-batch to have the same length as the longest sequence, then split into smaller sequences of the specified length. If splitting occurs, then the function creates extra mini-batches.

SequencePaddingValue - Value to pad sequences scalar

Value by which to pad input sequences, specified as a scalar. The option is valid only when SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN , because doing so can propagate errors throughout the network.

```
Shuffle - Option for data shuffling
'once' | 'never' | 'every-epoch'
```

Option for data shuffling, specified as one of the following:

- 'once ' - Shuffle the training and validation data once before training.
- 'never' - Do not shuffle the data.
- 'every-epoch' - Shuffle the training data before each training epoch, and shuffle the validation data before each network validation. If the mini-batch size does not evenly divide the number of training samples, then trainNetwork discards the training data that does not fit into the final complete mini-batch of each epoch. Set the Shuffle value to 'every-epoch' to avoid discarding the same data every epoch.

Verbose - Indicator to display training progress information

1 | 0

Indicator to display training progress information in the command window, specified as 1 (true) or 0 (false).

The displayed information includes the epoch number, iteration number, time elapsed, mini-batch loss, mini-batch accuracy, and base learning rate. When you train a regression network, root mean square error (RMSE) is shown instead of accuracy. If you validate the network during training, then the displayed information also includes the validation loss and validation accuracy (or RMSE).
Data Types: logical
VerboseFrequency - Frequency of verbose printing
positive integer
Frequency of verbose printing, which is the number of iterations between printing to the command window, specified as a positive integer. This property only has an effect when the Verbose value equals true.

If you validate the network during training, then trainNetwork prints to the command window every time validation occurs.

WorkerLoad - Worker load division

numeric vector
Worker load division for GPUs or CPUs, specified as a numeric vector. This property has an effect only when the ExecutionEnvironment value equals 'multi-gpu' or 'parallel'. The specified vector must contain one value per worker in the parallel pool.

For a vector \boldsymbol{w}, each worker gets $w_{i} / \sum_{i} w_{i}$ of the work.

OutputFen - Output functions

function handle | cell array of function handles
Output functions to call during training, specified as a function handle or cell array of function handles. trainNetwork calls the specified functions once before the start of training, after each iteration, and once after training has finished. trainNetwork passes a structure containing information in the following fields:

Field	Description
Epoch	Current epoch number

Field	Description
Iteration	Current iteration number
TimeSinceStart	Time in seconds since the start of training
TrainingLoss	Current mini-batch loss
ValidationLoss	Loss on the validation data
BaseLearnRate	Current base learning rate
TrainingAccuracy	Accuracy on the current mini-batch (classification networks)
TrainingRMSE	RMSE on the current mini-batch (regression networks)
ValidationAccuracy	Accuracy on the validation data (classification networks)
ValidationRMSE	RMSE on the validation data (regression networks)
State	Current training state, with a possible value of "start", "iteration", or "done".

If a field is not calculated or relevant for a certain call to the output functions, then that field contains an empty array.

You can use output functions to display or plot progress information, or to stop training. To stop training early, make your output function return true. If any output function returns true, then training finishes and trainNetwork returns the latest network. For an example showing how to stop training early, see "Stop Training Using Output Function" on page 1-652.

Data Types: function_handle \| cell

ValidationData - Data to use for validation during training

ImageDatastore | table | cell array
Data to use for validation during training, specified as one of the following:

- ImageDatastore with categorical labels for image classification problems.
- table, where the first column contains either image paths or images, and the subsequent columns contain the responses. For an image classification problem, the
response must be a categorical variable in the second table column. For a regression problem, the responses can be either in multiple columns as scalars, or in a single column as numeric vectors or cell arrays containing numeric 3-D arrays.
- cell array $\{\mathrm{X}, \mathrm{Y}\}$, where X is a numeric array of images and Y contains the responses. The first three dimensions of X are the height, width, and channels, and the last dimension is the image index. For an image classification problem, Y must be a categorical vector. For a regression problem, Y must be a numeric array. For more information on the allowed shape of Y, see details on page 1-0 on the trainNetwork page.

During training, trainNetwork predicts the labels of the validation data and calculates the validation accuracy and validation loss. To specify the validation frequency, use the 'ValidationFrequency' name-value pair argument. By default, if the validation loss is larger than or equal to the previously smallest loss five times in a row, then network training stops. To change the number of times that the validation loss is allowed to not decrease before training stops, use the 'ValidationPatience' name-value pair argument.

ValidationFrequency - Frequency of network validation positive integer

Frequency of network validation in number of iterations, specified as a positive integer.
The ValidationFrequency value is the number of iterations between evaluations of validation metrics.

ValidationPatience - Patience of validation stopping
 positive integer | Inf

Patience of validation stopping of network training, specified as a positive integer or Inf.
The 'ValidationPatience' value is the number of times that the loss on the validation set can be larger than or equal to the previously smallest loss before network training stops.

Examples

Specify Training Options

Create a set of options for training a network using stochastic gradient descent with momentum. Reduce the learning rate by a factor of 0.2 every 5 epochs. Set the maximum number of epochs for training to 20, and use a mini-batch with 64 observations at each iteration. Plot the training progress during training.

```
options = trainingOptions('sgdm',...
    'LearnRateSchedule','piecewise',...
    'LearnRateDropFactor',0.2,...
    'LearnRateDropPeriod',5,...
    'MaxEpochs',20,...
    'MiniBatchSize',64,...
    'Plots','training-progress')
options =
    TrainingOptionsSGDM with properties:
    Momentum: 0.9000
    InitialLearnRate: 0.0100
    LearnRateScheduleSettings: [1x1 struct]
        L2Regularization: 1.0000e-04
                        MaxEpochs: 20
            MiniBatchSize: 64
                        Verbose: 1
            VerboseFrequency: 50
                    ValidationData: []
            ValidationFrequency: 50
            ValidationPatience: 5
                            Shuffle: 'once'
            CheckpointPath: ''
        ExecutionEnvironment: 'auto'
            WorkerLoad: []
                        OutputFcn: []
                            Plots: 'training-progress'
            SequenceLength: 'longest'
        SequencePaddingValue: 0
```

- "Create Simple Deep Learning Network for Classification"
- "Transfer Learning Using AlexNet"
- "Resume Training from a Checkpoint Network"
- "Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud"

See Also

trainNetwork

Topics
"Create Simple Deep Learning Network for Classification"
"Transfer Learning Using AlexNet"
"Resume Training from a Checkpoint Network"
"Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud"
"Learn About Convolutional Neural Networks"
"Specify Layers of Convolutional Neural Network"
"Set Up Parameters and Train Convolutional Neural Network"

Introduced in R2016a

activations

Compute convolutional neural network layer activations
You can extract features using a trained convolutional neural network (ConvNet, CNN) on either a CPU or GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. Specify the hardware requirements using the ExecutionEnvironment name-value pair argument.

Syntax

```
features = activations(net,X,layer)
features = activations(net,X,layer,Name,Value)
```


Description

features = activations(net, X, layer) returns network activations for a specific layer using the trained network net and the data in X .

The function only supports image classification and regression networks.
features = activations(net,X,layer, Name, Value) returns network activations for a specific layer with additional options specified by one or more Name, Value pair arguments.

For example, you can specify the format of the output features.

Examples

Extract Features from Trained Convolutional Neural Network

Load the sample data.

```
[XTrain,TTrain] = digitTrain4DArrayData;
```

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-by-4940 array, where 28 is the height and 28 is the width of the images. 1 is the number of channels and 4940 is the number of synthetic images of handwritten digits. TTrain is a categorical vector containing the labels for each observation.

Construct the convolutional neural network architecture.

```
layers = [imageInputLayer([28 28 1]);
    convolution2dLayer (5,20);
    reluLayer();
    maxPooling2dLayer(2,'Stride',2);
    fullyConnectedLayer(10);
    softmaxLayer();
    classificationLayer()];
```

Set the options to default settings for the stochastic gradient descent with momentum. Specify the GPU as the hardware to train on. This option requires Parallel Computing Toolbox ${ }^{\text {TM }}$ and a CUDA®-enabled NVIDIA® ${ }^{\circledR}$ GPU with compute capability 3.0 or higher.

```
options = trainingOptions('sgdm','ExecutionEnvironment','gpu');
```

Train the network.

```
rng('default')
net = trainNetwork(XTrain,TTrain,layers,options);
Initializing image normalization.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Epoch & Iteration & Time Elapsed (seconds) & Mini-batch Loss & Mini-batch Accuracy & Base Learr Rate \\
\hline 1 & 1 & 0.01 & 2.3026 & 7.81\% & 0.01 \\
\hline 2 & 50 & 0.46 & 2.2735 & 33.59\% & 0.0 \\
\hline 3 & 100 & 0.92 & 1.6613 & \(48.44 \%\) & 0.01 \\
\hline 4 & 150 & 1.38 & 1.1803 & \(64.06 \%\) & 0.0 \\
\hline 6 & 200 & 1.89 & 1.0499 & \(64.06 \%\) & 0.01 \\
\hline 7 & 250 & 2.37 & 0.8392 & 76.56\% & 0.01 \\
\hline 8 & 300 & 2.86 & 0.6981 & \(77.34 \%\) & 0.01 \\
\hline 9 & 350 & 3.34 & 0.7084 & \(77.34 \%\) & 0.0 \\
\hline 11 & 400 & 3.87 & 0.4902 & 87.50\% & 0.0 \\
\hline 12 & 450 & 4.36 & 0.3839 & 91.41\% & 0.0 \\
\hline 13 & 500 & 4.83 & 0.2986 & 92.19\% & 0.0 \\
\hline 15 & 550 & 5.31 & 0.2583 & 93.75\% & 0.0 \\
\hline 16 & 600 & 5.79 & 0.2009 & 97.66\% & 0.0 \\
\hline
\end{tabular}
```

17	650	6.27	0.2642	92.97\%	0.01
18	700	6.77	0.1448	97.66\%	0.01
20	750	7.28	0.1314	96.88\%	0.01
21	800	7.77	0.1232	97.66\%	0.01
22	850	8.25	0.1009	98.44\%	0.01
24	900	8.72	0.1051	100.00\%	0.01
25	950	9.20	0.1483	97.66\%	0.01
26	1000	9.67	0.0743	99.22\%	0.01
27	1050	10.15	0.0603	100.00\%	0.01
29	1100	10.64	0.0769	99.22\%	0.01
30	1150	11.11	0.0524	100.00\%	0.01
30	1170	11.31	0.0566	100.00\%	0.01

In fact, trainNetwork, by default, uses a GPU to train the network, when available. If there is no available GPU, then it uses a CPU. Training a convolutional neural network on a GPU or in parallel requires Parallel Computing Toolbox ${ }^{\mathrm{TM}}$ and a CUDA \circledR-enabled NVIDIA® GPU with compute capability 3.0 or higher. There are also other hardware options such as training in parallel or using multiple GPUs. You can specify these options using the 'ExecutionEnvironment' name-value pair argument in the call to the trainingOptions function.

Make predictions, but rather than taking the output from the last layer, specify the second ReLU layer (the sixth layer) as the output layer.

```
trainFeatures = activations(net,XTrain,6);
```

These predictions from an inner layer are known as activations or features . activations method, by default, also uses a CUDA-enabled GPU with compute capability 3.0, when available. You can also choose to run activations on a CPU using the 'ExecutionEnvironment','cpu' name-value pair argument.

You can use the returned features to train a support vector machine using the Statistics and Machine Learning Toolbox ${ }^{\mathrm{TM}}$ function fitcecoc.

```
svm = fitcecoc(trainFeatures,TTrain);
```

Load the test data.

```
[XTest,TTest]= digitTest4DArrayData;
```

Extract the features from the same ReLU layer (the sixth layer) for test data and use the returned features to train a support vector machine.
testFeatures = activations(net,XTest, 6);
testPredictions = predict(svm,testFeatures);
Plot the confusion matrix. Convert the data into the format plotconfusion accepts
ttest $=$ dummyvar(double(TTest))'; \% dummyvar requires Statistics and Machine Learning tpredictions = dummyvar(double(testPredictions))';
plotconfusion(ttest,tpredictions);

Confusion Matrix

The overall accuracy for the test data using the trained network net is 97.8%.
Manually compute the overall accuracy.

```
accuracy = sum(TTest == testPredictions)/numel(TTest)
```

accuracy =

0.9778

- "Visualize Activations of a Convolutional Neural Network"

Input Arguments

net - Trained network
SeriesNetwork object
Trained network, specified as a SeriesNetwork object. You can get a trained network by importing a pretrained network (for example, by using the alexnet function) or by training your own network using the trainNetwork function.
activations does not support input networks that contain recurrent layers (for example, LSTM networks).

\mathbf{x} — Data for extracting features

3-D array of a single image | 4-D array of images | ImageDatastore object | table
Data for extracting features, specified as an array of a single image, a 4-D array of images, images stored as an ImageDatastore, or images or image paths in a table.

- If x is a single image, then the dimensions correspond to the height, width, and channels of the image.
- If X is an array of images, then the first three dimensions correspond to height, width, and channels of an image, and the fourth dimension corresponds to the image number.
- Images that are stored as an ImageDatastore object. For more information about this data type, see ImageDatastore.
- A table, where the first column contains either image paths or images.

For 'OutputAs', 'channels' option, the input data can be of different size than the data used for training. For other output options, the input data has to be the same size as the data used for training.

layer - Layer to extract features from

numeric index | character vector
Layer to extract features from, specified as a numeric index for the layer or a character vector that corresponds with one of the network layer names.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., Namen, ValueN.

Example: activations(net, x,layer,'OutputAs','channels')

OutputAs - Format of output activations

```
'rows'(default)| 'columns' | 'channels'
```

Format of output activations, specified as the comma-separated pair consisting of ' OutputAs' and one of the following:

- 'rows' - Y is an n-by- m matrix, where n is the number of observations, and m is the number of output elements from the chosen layer.
- 'columns' - Y is an m-by- n matrix, where m is the number of output elements from the chosen layer, and n is the number of observations. Each column of the matrix is the output for a single observation.
- 'channels' — Y is an h-by- w-by- c-by- n array, where h, w, and c are the height, width, and number of channels for the output of the chosen layer. n is the number of observations. Each h-by- w-by- c sub-array is the output for a single observation.

For 'OutputAs', 'channels' option, the input data in X can be of different size than the data used for training. For other output options, the data in X has to be the same size as the data used for training.

Example: 'OutputAs','columns'

Data Types: char

MiniBatchSize - Size of mini-batches

128 (default) | positive integer
Size of mini-batches to use for prediction, specified as a positive integer. Larger minibatch sizes require more memory, but can lead to faster predictions.

Example: 'MiniBatchSize',256

ExecutionEnvironment - Hardware resource

'auto' (default) | 'gpu' | 'cpu'
Hardware resource, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and one of the following:

- 'auto' - Use a GPU if one is available; otherwise, use the CPU.
- 'gpu' - Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
- 'cpu' - Use the CPU.

Example: 'ExecutionEnvironment','cpu'

Output Arguments

features - Activations from a network layer

n-by- m matrix | m-by- n matrix | h-by- w-by-c-by- n array
Activations from a network layer, returned as one of the following depending on the value of the 'OutputAs' name-value pair argument.

trainedFeatures	'OutputAs' value
n-by- m matrix	'rows'
m-by- n matrix	'columns'
h-by- w-by-c-by- n array	'channels'

See Also
SeriesNetwork | classify | predict | trainNetwork
\section*{Topics}
"Visualize Activations of a Convolutional Neural Network"
Introduced in R2016a

classify

Classify data using a trained deep learning neural network
You can make predictions using a trained neural network for deep learning on either a CPU or GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. Specify the hardware requirements using the ExecutionEnvironment name-value pair argument.

Syntax

```
[YPred,scores] = classify(net,X)
[YPred,scores] = classify(net,C)
[YPred,scores] = classify(___,Name,Value)
```


Description

[YPred,scores] = classify (net, X) predicts class labels for the image data in X using the trained network, net.
[YPred,scores] = classify(net,C) predicts class labels for the time series or sequence data in C using the trained LSTM network, net.
[YPred,scores] = classify(\qquad ,Name, Value) predicts class labels with additional options specified by one or more name-value pair arguments.

Examples

Classify Images Using Trained ConvNet
Load the sample data.

```
[XTrain,TTrain] = digitTrain4DArrayData;
```

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-by-4940 array, where 28 is the height and 28 is the width of the images. 1 is the number of channels and 4940 is the number of synthetic images of handwritten digits. TTrain is a categorical vector containing the labels for each observation.

Construct the convolutional neural network architecture.

```
layers = [imageInputLayer([28 28 1]);
    convolution2dLayer (5,20);
    reluLayer();
    maxPooling2dLayer(2,'Stride',2);
    fullyConnectedLayer(10);
    softmaxLayer();
    classificationLayer()];
```

Set the options to default settings for the stochastic gradient descent with momentum.

```
options = trainingOptions('sgdm');
```

Train the network.

```
rng('default')
net = trainNetwork(XTrain,TTrain,layers,options);
Training on single CPU.
Initializing image normalization.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Epoch & Iteration & Time Elapsed (seconds) & Mini-batch Loss & Mini-batch Accuracy & Base Learr Rate \\
\hline 1 & 1 & 0.51 & 2.3026 & 7.81\% & 0.0 \\
\hline 2 & 50 & 10.75 & 2.2735 & 33.59\% & 0.0 \\
\hline 3 & 100 & 19.69 & 1.6613 & 48.44\% & 0.0 \\
\hline 4 & 150 & 28.73 & 1.1803 & 64.06\% & 0.0 \\
\hline 6 & 200 & 39.21 & 1.0499 & 64.06\% & 0.01 \\
\hline 7 & 250 & 49.72 & 0.8391 & 76.56\% & 0.01 \\
\hline 8 & 300 & 60.43 & 0.6981 & 77.34\% & 0.01 \\
\hline 9 & 350 & 71.18 & 0.7084 & \(77.34 \%\) & 0.01 \\
\hline 11 & 400 & 81.73 & 0.4902 & 87.50\% & 0.0 \\
\hline 12 & 450 & 92.27 & 0.3839 & 91.41\% & 0.0 \\
\hline 13 & 500 & 102.69 & 0.2986 & 92.19\% & 0.0 \\
\hline 15 & 550 & 113.58 & 0.2583 & 93.75\% & 0.0 \\
\hline 16 & 600 & 124.42 & 0.2009 & 97.66\% & 0.0 \\
\hline 17 & 650 & 135.30 & 0.2642 & 92.97\% & 0.0 \\
\hline 18 & 700 & 145.94 & 0.1448 & 97.66\% & 0.0 \\
\hline
\end{tabular}
```


Run the trained network on a test set.

```
[XTest,TTest]= digitTest4DArrayData;
YTestPred = classify(net,XTest);
```

Display the first 10 images in the test data and compare to the classification from classify.

```
[TTest(1:10,:) YTestPred(1:10,:)]
```

```
ans =
    10x2 categorical array
```

0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0

The results from classify match the true digits for the first ten images.
Calculate the accuracy over all test data.

```
accuracy = sum(YTestPred == TTest)/numel(TTest)
```

```
accuracy =
```


0.9770

Classify Sequences Using a Trained LSTM Network

Load pretrained network. JapaneseVowelsNet is a pretrained LSTM network trained on the Japanese Vowels dataset as described in [1] and [2]. It was trained on the sequences sorted by sequence length with a mini-batch size of 27 .
load JapaneseVowelsNet
View the network architecture.

```
net.Layers
ans =
    5x1 Layer array with layers:
\begin{tabular}{llll}
1 & 'sequenceinput' & Sequence Input & Sequence input with 12 dimensions \\
2 & 'lstm' & LSTM & LSTM with 100 hidden units \\
3 & 'fc' & Fully Connected & g fully connected layer \\
4 & 'softmax' & Softmax & softmax \\
5 & 'classoutput' & Classification Output & crossentropyex with '1', '2', and
\end{tabular}
```

Load the test data.
load JapaneseVowelsTest
Classify the test data.

```
YPred = classify(net,XTest);
```

View the labels of the first 10 sequences with their predicted labels.

```
[YTest(1:10) YPred(1:10)]
ans = 10\times2 categorical array
    1 1
    1 1
    1 1
```

```
1
1
1
1
```

1
1

Calculate the classification accuracy of the predictions.

```
accuracy = sum(YPred == YTest)/numel(YTest)
accuracy = 0.8595
```

- "Classify Webcam Images Using Deep Learning"

Input Arguments

net - Trained network

SeriesNetwork object \| DAGNetwork object
Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained network by importing a pretrained network (for example, by using the alexnet function) or by training your own network using trainNetwork.

x - Image data

3-D array of a single image | 4-D array of images | ImageDatastore object | table
Image data, specified as a 3-D array representing a single image, a 4-D array of images, an ImageDatastore, or a table.

- If X is a 3-D array representing a single image, then X is a h-by- $w-c$ array where h, w, and c correspond to the height, width, and the number of channels of the image respectively.
- If x is a 4-D array images, then x is a h-by- $w-c$-by- N array where N is the number of images.
- If x is a table, then the first column contains either paths to images, or 3-D arrays representing images.

For more information about image datastores, see ImageDatastore.

C - Sequence or time series data cell array of matrices | matrix

Sequence or time series data, specified as a matrix representing a single time series, or a cell array of matrices representing multiple time series.

- If C is a matrix representing a single time series, then C is a D-by- S matrix, where D is the number of data points per time step, and S is the number of time steps.
- If C is a cell array of time series, then C is an N-by- 1 cell array, where N is the number of observations. Each entry of C is a time series represented by a matrix, with rows corresponding to data points and columns corresponding to time steps.

Name-Value Pair Arguments

Specify optional comma-separated pair of Name, Value argument. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' ').
Example: 'MiniBatchSize','256' specifies the mini-batch size as 256 .

MiniBatchSize - Size of mini-batches

128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger minibatch sizes require more memory, but can lead to faster predictions.

Example: 'MiniBatchSize',256

ExecutionEnvironment - Hardware resource

'auto' (default) | 'gpu' | 'cpu'
Hardware resource, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and one of the following:

- 'auto' - Use a GPU if one is available; otherwise, use the CPU.
- 'gpu' - Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
- 'cpu' - Use the CPU.

Example: 'ExecutionEnvironment','cpu'

SequenceLength - Option to pad, truncate, or split input sequences

'longest' (default) | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

- 'longest' - Pad sequences in the each mini-batch to have the same length as the longest sequence.
- 'shortest' - Truncate sequences in each mini-batch to have the same length as the shortest sequence.
- Positive integer - Pad sequences in each mini-batch to have the same length as the longest sequence, then split into smaller sequences of the specified length. If splitting occurs, then the function creates extra mini-batches.

```
Example: 'SequenceLength','shortest'
```


SequencePaddingValue - Value to pad input sequences

0 (default) | scalar
Value by which to pad input sequences, specified as a scalar. The option is valid only when SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN , because doing so can propagate errors throughout the network.

Example: 'SequencePaddingValue',-1

Output Arguments

YPred - Class labels

categorical vector | cell array of categorical vectors

Class labels, returned as one of the following:

- For image and sequence-to-label classification networks, yPred is a N-by- 1 categorical vector, where N is the number of observations.
- For sequence-to-sequence classification networks, YPred is a N-by- 1 cell array of matrices, where N is the number of observations. Each entry of YPred is a time series
represented by a 1-by- S categorical vector where S is the number of time steps in the corresponding entry in X .

scores - Class scores

matrix
Class scores, returned as one of the following:

- For image and sequence-to-label classification networks, scores is an N-by- K matrix of classification scores, where N is the number of observations and K is the number of classes.
- For sequence-to-sequence classification networks, scores is a N-by- 1 cell array of matrices, where N is the number of observations. Each entry of scores is a time series represented by a K-by- S matrix where K is the number of classes, and S is the total number of time steps in the corresponding entry in X .

For an example exploring scores, see "Classify Webcam Images Using Deep Learning".

Alternatives

You can compute the predicted scores from a trained network using predict.
You can also compute the activations from a network layer using activations.
For sequence-to-label and sequence-to-sequence classification networks, you can make predictions and update the network state using classifyAndUpdateState and predictAndUpdateState.

References

[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-Through Regions." Pattern Recognition Letters. Vol. 20, No. 11-13, pages 1103-1111.
[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https:// archive.ics.uci.edu $/ \mathrm{ml} /$ datasets $/ J a p a n e s e+V o w e l s$
See Alsoactivations| classifyAndUpdateState| predict| predictAndUpdateState
Topics"Classify Webcam Images Using Deep Learning"Introduced in R2016a

predict

Predict responses using a trained deep learning neural network
You can make predictions using a trained neural network for deep learning on either a CPU or GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. Specify the hardware requirements using the ExecutionEnvironment name-value pair argument.

Syntax

```
YPred = predict(net,X)
YPred = predict(net,C)
YPred = predict(net,X,Name,Value)
```


Description

YPred $=$ predict (net, X$)$ predicts responses for the image data in X using the trained network net.

YPred = predict (net, C) predicts responses for the sequence or time series data in C using the trained LSTM network net.

YPred = predict(net, X,Name, Value) predicts responses with additional options specified by one or more name-value pair arguments.

Examples

Predict Output Scores Using a Trained ConvNet
Load the sample data.

```
[XTrain,TTrain] = digitTrain4DArrayData;
```

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-by-4940 array, where 28 is the height and 28 is the width of the images. 1 is the number of channels and 4940 is the number of synthetic images of handwritten digits. TTrain is a categorical vector containing the labels for each observation.

Construct the convolutional neural network architecture.

```
layers = [imageInputLayer([28 28 1]);
    convolution2dLayer (5,20);
    reluLayer();
    maxPooling2dLayer(2,'Stride',2);
    fullyConnectedLayer(10);
    softmaxLayer();
    classificationLayer()];
```

Set the options to default settings for the stochastic gradient descent with momentum.

```
options = trainingOptions('sgdm');
```

Train the network.

```
rng(1)
net = trainNetwork(XTrain,TTrain,layers,options);
Training on single CPU.
Initializing image normalization.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Epoch & Iteration & Time Elapsed (seconds) & Mini-batch Loss & Mini-batch Accuracy & Base Learr Rate \\
\hline 1 & 1 & 0.16 & 2.3028 & 11.72\% & 0.0 \\
\hline 2 & 50 & 8.34 & 2.2653 & 30.47\% & 0.0 \\
\hline 3 & 100 & 17.14 & 1.5949 & 48.44\% & 0.0 \\
\hline 4 & 150 & 25.56 & 1.2292 & 58.59\% & 0.0 \\
\hline 6 & 200 & 33.93 & 1.0559 & 64.06\% & 0.01 \\
\hline 7 & 250 & 42.20 & 1.0304 & 64.06\% & 0.01 \\
\hline 8 & 300 & 50.17 & 0.7178 & 78.13\% & 0.01 \\
\hline 9 & 350 & 59.08 & 0.6900 & 78.13\% & 0.01 \\
\hline 11 & 400 & 67.18 & 0.5104 & 85.94\% & 0.0 \\
\hline 12 & 450 & 75.71 & 0.4311 & 89.06\% & 0.0 \\
\hline 13 & 500 & 85.16 & 0.2796 & 92.19\% & 0.0 \\
\hline 15 & 550 & 94.22 & 0.2389 & 96.09\% & 0.0 \\
\hline 16 & 600 & 103.45 & 0.2566 & 92.97\% & 0.0 \\
\hline 17 & 650 & 112.82 & 0.1773 & 96.88\% & 0.0 \\
\hline 18 & 700 & 122.23 & 0.1260 & 99.22\% & 0.0 \\
\hline
\end{tabular}
```

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 20 & 750 & 131.35 & 0.1297 & 100.00\% & 0.01 \\
\hline 21 & 800 & 140.48 & 0.1080 & 97.66\% & 0.01 \\
\hline 22 & 850 & 151.59 & 0.1176 & 98.44\% & 0.01 \\
\hline 24 & 900 & 162.16 & 0.0762 & 100.00\% & 0.01 \\
\hline 25 & 950 & 172.55 & 0.0774 & 100.00\% & 0.01 \\
\hline 26 & 1000 & 183.62 & 0.0877 & 99.22\% & 0.01 \\
\hline 27 & 1050 & 194.07 & 0.0645 & 99.22\% & 0.01 \\
\hline 29 & 1100 & 203.11 & 0.0624 & 100.00\% & 0.01 \\
\hline 30 & 1150 & 213.18 & 0.0488 & 100.00\% & 0.01 \\
\hline 30 & 1170 & 216.95 & 0.0816 & 99.22\% & 0.01 \\
\hline
\end{tabular}
```

Run the trained network on a test set and predict the scores.

```
[XTest,TTest]= digitTest4DArrayData;
YTestPred = predict(net,XTest);
```

predict, by default, uses a CUDA-enabled GPU with compute capability 3.0, when available. You can also choose to run predict on a CPU using the
'ExecutionEnvironment','cpu' name-value pair argument.
Display the first 10 images in the test data and compare to the predictions from predict.

TTest(1:10,:)
$\operatorname{ans}=$

10x1 categorical array

0
0
0
0

0
0
0
0
0
0

```
YTestPred(1:10,:)
```

```
ans =
    10x10 single matrix
    Columns 1 through 7
```

0.9993	0.0000	0.0002	0.0003	0.0000	0.0000	0.0001
0.8578	0.0000	0.0552	0.0003	0.0000	0.0002	0.0139
0.9999	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.9558	0.0000	0.0000	0.0000	0.0000	0.0000	0.0060
0.9616	0.0000	0.0041	0.0001	0.0000	0.0000	0.0004
0.9915	0.0000	0.0005	0.0000	0.0000	0.0000	0.0016
0.9734	0.0000	0.0003	0.0000	0.0000	0.0000	0.0247
1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.9126	0.0000	0.0016	0.0002	0.0003	0.0007	0.0001
0.9409	0.0000	0.0102	0.0020	0.0001	0.0001	0.0278

Columns 8 through 10

0.0000	0.0000	0.0002
0.0001	0.0035	0.0690
0.0000	0.0000	0.0001
0.0000	0.0010	0.0372
0.0002	0.0335	0.0002
0.0000	0.0044	0.0020
0.0000	0.0016	0.0001
0.0000	0.0000	0.0000
0.0000	0.0012	0.0834
0.0000	0.0143	0.0047

TTest contains the digits corresponding to the images in XTest. The columns of YTestPred contain predict's estimation of a probability that an image contains a particular digit. That is, the first column contains the probability estimate that the given image is digit 0 , the second column contains the probability estimate that the image is digit 1 , the third column contains the probability estimate that the image is digit 2, and so on. You can see that predict's estimation of probabilities for the correct digits are almost 1 and the probability for any other digit is almost 0 . predict correctly estimates the first 10 observations as digit 0 .

Predict Output Scores Using a Trained LSTM Network

Load pretrained network. JapaneseVowelsNet is a pretrained LSTM network trained on the Japanese Vowels dataset as described in [1] and [2]. It was trained on the sequences sorted by sequence length with a mini-batch size of 27 .
load JapaneseVowelsNet
View the network architecture.

```
net.Layers
ans =
    5x1 Layer array with layers:
```

1	'sequenceinput'	Sequence Input	Sequence input with 12 dimensions
2	'lstm'	LSTM	LSTM with 100 hidden units
3	'fc'	Fully Connected	9 fully connected layer
4	'softmax'	Softmax	Softmax
5	'classoutput'	Classification Output	crossentropyex with '1', '2', and

Load the test data.
load JapaneseVowelsTest
Make predictions on the test data.

```
YPred = predict(net,XTest);
```

View the prediction scores for the first 10 sequences.

```
YPred(1:10,:)
ans = 10\times9 single matrix
\begin{tabular}{llllllll}
0.9918 & 0.0000 & 0.0000 & 0.0000 & 0.0006 & 0.0010 & 0.0001 & 0.0006 \\
0.9868 & 0.0000 & 0.0000 & 0.0000 & 0.0006 & 0.0010 & 0.0001 & 0.0010 \\
0.9924 & 0.0000 & 0.0000 & 0.0000 & 0.0006 & 0.0010 & 0.0001 & 0.0006 \\
0.9896 & 0.0000 & 0.0000 & 0.0000 & 0.0006 & 0.0009 & 0.0001 & 0.0007 \\
0.9965 & 0.0000 & 0.0000 & 0.0000 & 0.0007 & 0.0009 & 0.0000 & 0.0003 \\
0.9888 & 0.0000 & 0.0000 & 0.0000 & 0.0006 & 0.0010 & 0.0001 & 0.0008 \\
0.9886 & 0.0000 & 0.0000 & 0.0000 & 0.0006 & 0.0010 & 0.0001 & 0.0008 \\
0.9982 & 0.0000 & 0.0000 & 0.0000 & 0.0006 & 0.0007 & 0.0000 & 0.0001 \\
0.9883 & 0.0000 & 0.0000 & 0.0000 & 0.0006 & 0.0010 & 0.0001 & 0.0008 \\
0.9959 & 0.0000 & 0.0000 & 0.0000 & 0.0007 & 0.0011 & 0.0000 & 0.0004
\end{tabular}
```

Compare these prediction scores to the labels of these sequences. The function assigns high prediction scores to the correct class.

```
YTest(1:10)
ans = 10\times1 categorical array
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
```


Input Arguments

net - Trained network

SeriesNetwork object \| DAGNetwork object
Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained network by importing a pretrained network (for example, by using the alexnet function) or by training your own network using trainNetwork.

x - Image data

3-D array of a single image | 4-D array of images | ImageDatastore object | table
Image data, specified as a 3-D array representing a single image, a 4-D array of images, an ImageDatastore, or a table.

- If X is a 3-D array representing a single image, then X is a h-by- $w-c$ array where h, w, and c correspond to the height, width, and the number of channels of the image respectively.
- If x is a 4-D array images, then x is a h-by- $w-c$-by- N array where N is the number of images.
- If X is a table, then the first column contains either paths to images, or 3-D arrays representing images.

For more information about image datastores, see ImageDatastore.

C - Sequence or time series data cell array of matrices | matrix

Sequence or time series data, specified as a matrix representing a single time series, or a cell array of matrices representing multiple time series.

- If C is a matrix representing a single time series, then C is a D-by- S matrix, where D is the number of data points per time step, and S is the number of time steps.
- If C is a cell array of time series, then C is an N-by- 1 cell array, where N is the number of observations. Each entry of C is a time series represented by a matrix, with rows corresponding to data points and columns corresponding to time steps.

Name-Value Pair Arguments

Specify optional comma-separated pair of Name, Value argument. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' ').

Example: 'MiniBatchSize', 256 specifies the mini-batch size as 256 .

MiniBatchSize - Size of mini-batches

128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger minibatch sizes require more memory, but can lead to faster predictions.

Example: 'MiniBatchSize',256

ExecutionEnvironment - Hardware resource

'auto' (default) | 'gpu' | 'cpu'
Hardware resource, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and one of the following:

- 'auto' - Use a GPU if one is available; otherwise, use the CPU.
- 'gpu' - Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
- 'cpu' - Use the CPU.

Example: 'ExecutionEnvironment','cpu'

SequenceLength - Option to pad, truncate, or split input sequences

'longest' (default) | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

- 'longest' - Pad sequences in the each mini-batch to have the same length as the longest sequence.
- 'shortest' - Truncate sequences in each mini-batch to have the same length as the shortest sequence.
- Positive integer - Pad sequences in each mini-batch to have the same length as the longest sequence, then split into smaller sequences of the specified length. If splitting occurs, then the function creates extra mini-batches.

```
Example:'SequenceLength','shortest'
```


SequencePaddingValue - Value to pad input sequences

0 (default) | scalar
Value by which to pad input sequences, specified as a scalar. The option is valid only when SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN , because doing so can propagate errors throughout the network.

Example: 'SequencePaddingValue',-1

Output Arguments

YPred — Predicted scores or responses

matrix | 4-D numeric array | cell array of matrices
Predicted scores, returned as one of the following:

- For image and sequence to label classification networks, YPred is a N-by- K matrix, where N is the number of observations, and K is the number of classes.
- For sequence-to-sequence classification networks, YPred is a N-by- 1 cell array of matrices, where N is the number of observations. Each entry of YPred is a time series
represented by a K-by- S matrix where K is the number of classes, and S is the total number of time steps in the corresponding entry in X.
- For regression networks, YPred can be one of the following:
- N-by- r matrix, where N is the number of observations and r is the number of responses
- h-by- w-by- c-by- N numeric array, where N is the number of observations and h-by-w-by- c is the size of a single response.

Algorithms

If the image data contains NaNs, predict propagates them through the network. If the network has ReLU layers, these layers ignore NaNs. However, if the network does not have a ReLU layer, then predict returns NaNs as predictions.

Alternatives

You can compute the predicted scores and the predicted classes from a trained network using classify.

You can also compute the activations from a network layer using activations.
For sequence-to-label and sequence-to-sequence classification networks (LSTM networks), you can make predictions and update the network state using classifyAndUpdateState and predictAndUpdateState.

References

[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-Through Regions." Pattern Recognition Letters. Vol. 20, No. 11-13, pages 1103-1111.
[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https:// archive.ics.uci.edu/ml/datasets/Japanese+Vowels

See Also

activations | classify | classifyAndUpdateState | predictAndUpdateState

Introduced in R2016a

setLearnRateFactor

Package: nnet.cnn.layer
Set learn rate factor of layer learnable parameter

Syntax

```
layer = setLearnRateFactor(layer,parameterName,factor)
```


Description

layer = setLearnRateFactor(layer, parameterName,factor) sets the learn rate factor of the parameter with the name parameterName in layer to factor.

For built-in layers, you can set the learn rate factor directly by using the corresponding property. For example, for a convolution2dLayer layer, the syntax layer = setLearnRateFactor (layer, 'Weights',factor) is equivalent to layer.WeightLearnRateFactor = factor.

Examples

Set and Get Learning Rate Factor of Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a user-defined PReLU layer.

To use the example layer examplePreluLayer, add the example folder to the path.

```
exampleFolder = genpath(fullfile(matlabroot,'examples','nnet'));
addpath(exampleFolder)
```

Create a layer array including a user-defined pReLU layer.

```
layers = [ ...
    imageInputLayer([[28 28 1])
```

```
convolution2dLayer (5,20)
batchNormalizationLayer
examplePreluLayer(20)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
```

Set the learn rate factor of the 'Alpha' learnable parameter of the examplePreluLayer to 2 .

```
layers(4) = setLearnRateFactor(layers(4),'Alpha',2);
```

View the updated learn rate factor.

```
factor = getLearnRateFactor(layers(4),'Alpha')
factor = 2
```

Remove the example folder from the path using rmpath.

```
rmpath(exampleFolder)
```


Input Arguments

layer - Input layer

scalar Layer object
Input layer, specified as a scalar Layer object.
parameterName - Parameter name
character vector
Parameter name, specified as a character vector.
Example: 'Alpha'
Data Types: char

factor - Learning rate factor

nonnegative scalar
Learning rate factor for the parameter, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the specified parameter. For example, if factor is 2 , then the learning rate for the specified parameter is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

Example: 2

See Also

getL2Factor \| getLearnRateFactor \| setL2Factor \| trainNetwork | trainingOptions

Topics

"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"
"Define New Deep Learning Layers"

Introduced in R2017b

getLearnRateFactor

Package: nnet.cnn.layer
Get learn rate factor of layer learnable parameter

Syntax

```
factor = getLearnRateFactor(layer,parameterName)
```


Description

factor = getLearnRateFactor(layer,parameterName) returns the learn rate factor of the parameter with the name parameterName in layer.

For built-in layers, you can get the learn rate factor directly by using the corresponding property. For example, for a convolution2dLayer layer, the syntax factor = getLearnRateFactor(layer,'Weights',factor) is equivalent to factor = layer.WeightLearnRateFactor.

Examples

Set and Get Learning Rate Factor of Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a user-defined PReLU layer.

To use the example layer examplePreluLayer, add the example folder to the path.

```
exampleFolder = genpath(fullfile(matlabroot,'examples','nnet'));
addpath(exampleFolder)
```

Create a layer array including a user-defined pReLU layer.

```
layers = [ ...
    imageInputLayer([[28 28 1])
```

```
convolution2dLayer (5,20)
batchNormalizationLayer
examplePreluLayer(20)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
```

Set the learn rate factor of the 'Alpha' learnable parameter of the examplePreluLayer to 2 .

```
layers(4) = setLearnRateFactor(layers(4),'Alpha',2);
```

View the updated learn rate factor.

```
factor = getLearnRateFactor(layers(4),'Alpha')
factor = 2
```

Remove the example folder from the path using rmpath.

```
rmpath (exampleFolder)
```


Input Arguments

layer - Input layer
 scalar Layer object

Input layer, specified as a scalar Layer object.
parameterName - Parameter name
character vector
Parameter name, specified as a character vector.
Example: 'Alpha'
Data Types: char

See Also

getL2Factor | setL2Factor \| setLearnRateFactor | trainNetwork | trainingOptions

Topics
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network" "Define New Deep Learning Layers"

Introduced in R2017b

setL2Factor

Package: nnet.cnn.layer
Set L2 regularization factor of layer learnable parameter

Syntax

```
layer = setL2Factor(layer,parameterName,factor)
```


Description

layer $=$ setL2Factor(layer, parameterName,factor) sets the L2 regularization factor of the parameter with the name parameterName in layer to factor.

For built-in layers, you can set the L2 regularization factor directly by using the corresponding property. For example, for a convolution2dLayer layer, the syntax layer = setL2Factor(layer,'Weights',factor) is equivalent to layer. WeightL2Factor = factor.

Examples

Set and Get L2 Regularization Factor of Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a layer.
To use the example layer examplePreluLayer, add the example folder to the path.

```
exampleFolder = genpath(fullfile(matlabroot,'examples','nnet'));
addpath(exampleFolder)
```

Create a layer array including a user-defined pReLU layer.

```
layers = [ ...
    imageInputLayer([[28 28 1])
```

```
convolution2dLayer (5,20)
batchNormalizationLayer
examplePreluLayer(20)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
```

Set the L2 regularization factor of the 'Alpha' learnable parameter of the examplePreluLayer to 2 .

```
layers(4) = setL2Factor(layers(4),'Alpha',2);
```

View the updated L2 regularization factor.

```
factor = getL2Factor(layers(4),'Alpha')
factor = 2
```

Remove the example folder from the path using rmpath.

```
rmpath(exampleFolder)
```


Input Arguments

layer - Input layer

scalar Layer object
Input layer, specified as a scalar Layer object.
parameterName - Parameter name
character vector
Parameter name, specified as a character vector.
Example: 'Alpha'
Data Types: char

factor - L2 regularization factor

nonnegative scalar
L2 regularization factor for the parameter, specified as a nonnegative scalar.

The software multiplies this factor with the global L2 regularization factor to determine the learning rate for the specified parameter. For example, if factor is 2 , then the L2 regularization for the specified parameter is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the trainingOptions function.

Example: 2

See Also

getL2Factor \| getLearnRateFactor \| setLearnRateFactor \| trainNetwork | trainingOptions

Topics

"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"
"Define New Deep Learning Layers"

Introduced in R2017b

getL2Factor

Package: nnet.cnn.layer
Get L2 regularization factor of layer learnable parameter

Syntax

```
factor = getL2RateFactor(layer,parameterName)
```


Description

factor $=$ getL2RateFactor(layer, parameterName) returns the L2 regularization factor of the parameter with the name parameterName in layer.

For built-in layers, you can get the L2 regularization factor directly by using the corresponding property. For example, for a convolution2dLayer layer, the syntax factor = getL2Factor(layer,'Weights',factor) is equivalent to factor = layer.WeightL2Factor.

Examples

Set and Get L2 Regularization Factor of Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a layer.
To use the example layer examplePreluLayer, add the example folder to the path.

```
exampleFolder = genpath(fullfile(matlabroot,'examples','nnet'));
addpath(exampleFolder)
```

Create a layer array including a user-defined pReLU layer.

```
layers = [ ...
    imageInputLayer([[28 28 1])
```

```
convolution2dLayer (5,20)
batchNormalizationLayer
examplePreluLayer(20)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
```

Set the L2 regularization factor of the 'Alpha' learnable parameter of the examplePreluLayer to 2 .

```
layers(4) = setL2Factor(layers(4),'Alpha',2);
```

View the updated L2 regularization factor.

```
factor = getL2Factor(layers(4),'Alpha')
factor = 2
```

Remove the example folder from the path using rmpath.

```
rmpath (exampleFolder)
```


Input Arguments

layer - Input layer
 scalar Layer object

Input layer, specified as a scalar Layer object.
parameterName - Parameter name
character vector
Parameter name, specified as a character vector.
Example: 'Alpha'
Data Types: char

See Also

getLearnRateFactor \| setL2Factor \| setLearnRateFactor | trainNetwork | trainingOptions

Topics
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network" "Define New Deep Learning Layers"

Introduced in R2017b

classifyAndUpdateState

Classify data using a trained recurrent neural network and update the network state
You can make predictions using a trained convolutional neural network (ConvNet, CNN) on either a CPU or GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. Specify the hardware requirements using the "ExecutionEnvironment" on page 1-0 name-value pair argument.

Syntax

```
[updatedNet,YPred] = classifyAndUpdateState(recNet,C)
[updatedNet,YPred,scores] = classifyAndUpdateState(recNet,c)
___ = classifyAndUpdateState(___,Name,Value)
```


Description

[updatedNet,YPred] = classifyAndUpdateState(recNet,C) classifies the data in C using the trained recurrent neural network recNet and updates the network state.

This function supports recurrent neural networks only. The input recNet must have at least one recurrent layer.
[updatedNet,YPred,scores] = classifyAndUpdateState(recNet,C) classifies the data, returns a matrix of classification scores, and updates the network state.
= classifyAndUpdateState(\qquad ,Name, Value) uses any of the arguments in the previous syntaxes and additional options specified by one or more Name, Value pair arguments. For example, 'MiniBatchSize', 27 classifies data using mini-batches of size 27

Examples

Classify and Update Network State

Classify data using a recurrent neural network and update the network state.
To reproduce the results in this example, set rng to 'default'.

```
rng('default')
```

Load JapaneseVowelsNet, a pretrained long short-term memory (LSTM) network trained on the Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences sorted by sequence length with a mini-batch size of 27 .
load JapaneseVowelsNet
View the network architecture.

```
net.Layers
ans =
    5x1 Layer array with layers:
        1 'sequenceinput' Sequence Input Sequence input with 12 dimensions
        2 'lstm' LSTM LSTM with 100 hidden units
        3 'fc' Fully Connected 9 fully connected layer
        4 'softmax' Softmax softmax
        5 'classoutput' Classification Output crossentropyex with '1', '2', and 7
```

Load the test data.
load JapaneseVowelsTest
Loop over the time steps in a sequence. Classify each time step and update the network state.

```
X = XTest{94};
numTimeSteps = size(X,2);
for i = 1:numTimeSteps
    v = X(:,i);
    [net,label,score] = classifyAndUpdateState(net,v);
    labels(i) = label;
end
```

Plot the predicted labels in a stair plot. The plot shows how the predictions change between time steps.

```
figure
stairs(labels, '-o')
xlim([1 numTimeSteps])
xlabel("Time Step")
ylabel("Predicted Class")
title("Classification Over Time Steps")
```

Classification Over Time Steps

Compare the predictions with the true label. Plot a horizontal line showing the true label of the observation.

```
trueLabel = YTest(94)
trueLabel = categorical
    3
```

```
hold on
line([1 numTimeSteps],[trueLabel trueLabel], ...
        'Color','red', ...
        'LineStyle','--')
legend(["Prediction" "True Label"])
```


Input Arguments

recNet - Trained recurrent neural network

SeriesNetwork object

Trained recurrent neural network, specified as a SeriesNetwork object. You can get a trained network by importing a pretrained network or by training your own network using the trainNetwork function.
recNet is a recurrent neural network. It must have at least one recurrent layer.

C - Sequence or time series data

cell array of matrices | matrix
Sequence or time series data, specified as a matrix representing a single time series, or a cell array of matrices representing multiple time series.

- If C is a matrix representing a single time series, then C is a D-by- S matrix, where D is the number of data points per time step, and S is the number of time steps.
- If C is a cell array of time series, then C is an N-by- 1 cell array, where N is the number of observations. Each entry of C is a time series represented by a matrix, with rows corresponding to data points and columns corresponding to time steps.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , Namen, Valuen.

Example: [updatedNet, YPred] = classifyAndUpdateState (recNet,C,'MiniBatchSize',27) classifies data using mini-batches of size 27.

MiniBatchSize - Size of mini-batches

128 (default) | positive integer
Size of mini-batches to use for prediction, specified as a positive integer. Larger minibatch sizes require more memory, but can lead to faster predictions.

Example: 'MiniBatchSize',256

ExecutionEnvironment - Hardware resource

```
'auto'(default) | 'gpu' | 'cpu'
```

Hardware resource, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and one of the following:

- 'auto' - Use a GPU if one is available; otherwise, use the CPU.
- 'gpu' - Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
- 'cpu' - Use the CPU.

Example: 'ExecutionEnvironment','cpu'

SequenceLength - Option to pad, truncate, or split input sequences

```
'longest'(default) | 'shortest' | positive integer
```

Option to pad, truncate, or split input sequences, specified as one of the following:

- 'longest' - Pad sequences in the each mini-batch to have the same length as the longest sequence.
- 'shortest' - Truncate sequences in each mini-batch to have the same length as the shortest sequence.
- Positive integer - Pad sequences in each mini-batch to have the same length as the longest sequence, then split into smaller sequences of the specified length. If splitting occurs, then the function creates extra mini-batches.

```
Example: 'SequenceLength','shortest'
```


SequencePaddingValue - Value to pad input sequences

0 (default) | scalar
Value by which to pad input sequences, specified as a scalar. The option is valid only when SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN , because doing so can propagate errors throughout the network.

Example: 'SequencePaddingValue',-1

Output Arguments

updatedNet - Updated network
SeriesNetwork object

Updated network, returned as a SeriesNetwork object.

YPred - Predicted class labels

categorical vector | cell array
Predicted class labels, returned as one of the following:

- For sequence-to-label classification, YPred is an N-by- 1 categorical vector, where N is the number of observations.
- For sequence-to-sequence classification, YPred is a N-by- 1 cell array of categorical vectors, where N is the number of observations. Each entry of labels is a time series represented by a 1-by- S categorical vector of labels, where S is the total number of time steps in the corresponding entry in X .

scores - Predicted class scores

matrix | cell array
Predicted class scores, returned as one of the following:

- If the network predicts one label for each observation, then scores is an N-by- K matrix, where N is the number of observations, and K is the number of classes.
- If the network predicts a sequence for each observation, then scores is an N-by- 1 cell array of matrices, where N is the number of observations. Each entry of scores is a time series represented by a K-by- S matrix, where K is the number of classes, and S is the total number of time steps in the corresponding entry in C.

References

[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-Through Regions." Pattern Recognition Letters. Vol. 20, No. 11-13, pages 1103-1111.
[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https:// archive.ics.uci.edu/ml/datasets/Japanese+Vowels

See Also
lstmLayer | predictAndUpdateState | resetState | sequenceInputLayer
\section*{Topics}
"Classify Sequence Data Using LSTM Networks"
"Long Short-Term Memory Networks"
"Specify Layers of Convolutional Neural Network"
"Set Up Parameters and Train Convolutional Neural Network"
"Deep Learning in MATLAB"
Introduced in R2017b

predictAndUpdateState

Predict responses using a trained recurrent neural network and update the network state

You can make predictions using a trained convolutional neural network (ConvNet, CNN) on either a CPU or GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. Specify the hardware requirements using the "'ExecutionEnvironment" on page 1-0 name-value pair argument.

Syntax

```
[updatedNet,YPred] = predictAndUpdateState(recNet,C)
[updatedNet,YPred] = predictAndUpdateState( ___,Name,Value)
```


Description

[updatedNet,YPred] = predictAndUpdateState(recNet,C) predicts responses for data in C using the trained recurrent neural network recNet and updates the network state.

This function supports recurrent neural networks only. The input recNet must have at least one recurrent layer.
[updatedNet,YPred] = predictAndUpdateState(\qquad , Name, Value) uses any of the arguments in the previous syntaxes and additional options specified by one or more Name, Value pair arguments. For example, 'MiniBatchSize',27 makes predictions using mini-batches of size 27.

Examples

Predict and Update Network State

Predict responses using a trained recurrent neural network and update the network state.

To reproduce the results in this example, set rng to 'default'.

```
rng('default')
```

Load JapaneseVowelsNet, a pretrained long short-term memory (LSTM) network trained on the Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences sorted by sequence length with a mini-batch size of 27 .

```
load JapaneseVowelsNet
```

View the network architecture.

```
net.Layers
ans =
    5x1 Layer array with layers:
l 'sequenceinput' 
```

Load the test data.
load JapaneseVowelsTest
Loop over the time steps in a sequence. Predict the scores of each time step and update the network state.

```
X = XTest{94};
numTimeSteps = size(X,2);
for i = 1:numTimeSteps
    v = X(:,i);
    [net,score] = predictAndUpdateState(net,v);
    scores(:,i) = score;
end
```

Plot the prediction scores. The plot shows how the prediction scores change between time steps.

```
figure
lines = plot(scores');
xlim([1 numTimeSteps])
legend("Class " + net.Layers(end).ClassNames, ...
    'Location', 'northwest')
xlabel("Time Step")
ylabel("Score")
title("Prediction Scores Over Time Steps")
```


Highlight the prediction scores over time steps for the correct class.

```
trueLabel = YTest(94)
```

trueLabel = categorical
3
lines(trueLabel).LineWidth = 3;

Display the final time step prediction in a bar chart.

```
figure
bar(score)
title("Final Prediction Scores")
xlabel("Class")
ylabel("Score")
```

Final Prediction Scores

Input Arguments

recNet - Trained recurrent neural network

SeriesNetwork object
Trained recurrent neural network, specified as a SeriesNetwork object. You can get a trained network by importing a pretrained network or by training your own network using the trainNetwork function.
recNet is a recurrent neural network. It must have at least one recurrent layer.

C - Sequence or time series data
 cell array of matrices | matrix

Sequence or time series data, specified as a matrix representing a single time series, or a cell array of matrices representing multiple time series.

- If C is a matrix representing a single time series, then C is a D-by- S matrix, where D is the number of data points per time step, and S is the number of time steps.
- If C is a cell array of time series, then C is an N-by- 1 cell array, where N is the number of observations. Each entry of C is a time series represented by a matrix, with rows corresponding to data points and columns corresponding to time steps.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: [updatedNet, YPred] =
predictAndUpdateState(recNet,C,'MiniBatchSize',27) makes predictions using mini-batches of size 27.

MiniBatchSize - Size of mini-batches

128 (default) | positive integer
Size of mini-batches to use for prediction, specified as a positive integer. Larger minibatch sizes require more memory, but can lead to faster predictions.

Example: 'MiniBatchSize',256

ExecutionEnvironment - Hardware resource

'auto' (default) | 'gpu' | 'cpu'
Hardware resource, specified as the comma-separated pair consisting of
'ExecutionEnvironment ' and one of the following:

- 'auto' - Use a GPU if one is available; otherwise, use the CPU.
- 'gpu' - Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel

Computing Toolbox or a suitable GPU is not available, then the software returns an error.

- 'cpu' - Use the CPU.

Example: 'ExecutionEnvironment','cpu'

SequenceLength - Option to pad, truncate, or split input sequences

```
'longest'(default) | 'shortest' | positive integer
```

Option to pad, truncate, or split input sequences, specified as one of the following:

- 'longest' - Pad sequences in the each mini-batch to have the same length as the longest sequence.
- 'shortest' - Truncate sequences in each mini-batch to have the same length as the shortest sequence.
- Positive integer - Pad sequences in each mini-batch to have the same length as the longest sequence, then split into smaller sequences of the specified length. If splitting occurs, then the function creates extra mini-batches.

```
Example:'SequenceLength','shortest'
```


SequencePaddingValue - Value to pad input sequences

0 (default) | scalar

Value by which to pad input sequences, specified as a scalar. The option is valid only when SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN, because doing so can propagate errors throughout the network.

Example: 'SequencePaddingValue',-1

Output Arguments

updatedNet - Updated network
SeriesNetwork object
Updated network, returned as a SeriesNetwork object.

YPred - Prediction scores

matrix | cell array of matrices

Prediction scores, returned as one of the following:

- For sequence-to-label classification, YPred is an N-by- K matrix, where N is the number of observations, and K is the number of classes.
- For sequence-to-sequence classification, YPred is an N-by- 1 cell array of matrices, where N is the number of observations. Each entry of YPred is a time series represented by a K-by- S matrix, where K is the number of classes, and S is the total number of time steps in the corresponding entry in C.

References

[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-Through Regions." Pattern Recognition Letters. Vol. 20, No. 11-13, pages 1103-1111.
[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https:// archive.ics.uci.edu/ml/datasets/Japanese+Vowels

See Also

classifyAndUpdateState | lstmLayer| resetState| sequenceInputLayer

Topics

"Classify Sequence Data Using LSTM Networks"
"Long Short-Term Memory Networks"
"Specify Layers of Convolutional Neural Network"
"Set Up Parameters and Train Convolutional Neural Network"
"Deep Learning in MATLAB"

Introduced in R2017b

resetState

Reset the state of a recurrent neural network

Syntax

```
updatedNet = resetState(recNet)
```


Description

updatedNet $=$ resetState $($ recNet $)$ resets the state of a recurrent neural network to an initial state of zeros.

Examples

Reset Network State

Reset the network state between sequence predictions.
To reproduce the results in this example, set rng to 'default'.

```
rng('default')
```

Load JapaneseVowelsNet, a pretrained long short-term memory (LSTM) network trained on the Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences sorted by sequence length with a mini-batch size of 27 .

```
load JapaneseVowelsNet
```

View the network architecture.

```
net.Layers
ans =
    5x1 Layer array with layers:
```

```
'sequenceinput' Sequence Input
'lstm' LSTM
'fc' Fully Connected
2 'lstm'
2 'lstm'
Softmax
Sequence input with 12 dimensions
LSTM with 100 hidden units
fully connected layer
Classification Output
softmax
crossentropyex with '1', '2', and
```

Load the test data.

```
load JapaneseVowelsTest
```

Classify a sequence and update the network state. For reproducibility, set rng to 'shuffle'.

```
rng('shuffle')
X = XTest{94};
[net,label] = classifyAndUpdateState(net,XTest{94});
```

Classify another sequence using the updated network.

```
X = XTest{1};
label = classify(net,X)
label = categorical
    7
```

Compare the final prediction with the true label.

```
trueLabel = YTest(1)
trueLabel = categorical
    1
```

The updated state of the network may have negatively influenced the classification. Reset the network state and predict on the sequence again.

```
net = resetState(net);
label = classify(net,XTest{1})
label = categorical
    1
```


Input Arguments

recNet - Trained recurrent neural network

SeriesNetwork object
Trained recurrent neural network, specified as a SeriesNetwork object. You can get a trained network by importing a pretrained network or by training your own network using the trainNetwork function.
recNet is a recurrent neural network. It must have at least one recurrent layer.

Output Arguments

updatedNet - Updated network
SeriesNetwork object
Updated network, returned as a SeriesNetwork object.

References

[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-Through Regions." Pattern Recognition Letters. Vol. 20, No. 11-13, pages 1103-1111.
[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https:// archive.ics.uci.edu/ml/datasets/Japanese+Vowels

See Also

classifyAndUpdateState | lstmLayer | predictAndUpdateState |
sequenceInputLayer

Topics

"Classify Sequence Data Using LSTM Networks"
"Long Short-Term Memory Networks"
"Specify Layers of Convolutional Neural Network"
"Set Up Parameters and Train Convolutional Neural Network"
"Deep Learning in MATLAB"
Introduced in R2017b

addLayers

Add layers to layer graph

Syntax

```
newlgraph = addLayers(lgraph,larray)
```


Description

newlgraph = addLayers(lgraph,larray) adds the network layers in larray to the layer graph lgraph. The new layer graph, newlgraph, contains the layers and connections of lgraph, together with the layers in larray connected sequentially. The layer names in larray must be unique, nonempty, and different from the names of the layers in lgraph.

Examples

Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify images of digits. The simple network in this example consists of:

- A main branch with layers connected sequentially.
- A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable the parameter gradients to flow more easily from the output layer to the earlier layers of the network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs element-wise. Specify the number of inputs that the addition layer should sum. All layers must have names and all names must be unique.

```
layers = [
    imageInputLayer([28 28 1],'Name','input')
```

```
convolution2dLayer(5,16,'Padding','same','Name','conv 1')
batchNormalizationLayer('Name','BN_1')
reluLayer('Name','relu_1')
convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
batchNormalizationLayer('Name','BN_2')
reluLayer('Name','relu_2')
convolution2dLayer(3,32,'Padding','same','Name','conv_3')
batchNormalizationLayer('Name','BN_3')
reluLayer('Name','relu_3')
additionLayer(2,'Name','add')
averagePooling2dLayer(2,'Stride',2,'Name','avpool')
fullyConnectedLayer(10,'Name','fc')
softmaxLayer('Name','softmax')
classificationLayer('Name','classOutput')];
```

Create a layer graph from the layer array. layerGraph connects all the layers in layers sequentially. Plot the layer graph.

```
lgraph = layerGraph(layers);
figure
plot(lgraph)
```


Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of convolutional filters and the stride so that the activation size matches the activation size of the 'relu_3' layer. This enables the addition layer to add the outputs of the 'skipConv' and 'relu_3' layers. To check that the layer has been added, plot the layer graph.

```
skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
```


Create the shortcut connection from the 'relu_1' to the 'add' layer. Because you specified the number of inputs to the addition layer to be two when you created the layer, the layer has two inputs with the names 'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the 'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the 'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipconv' layers. To check that the layers are correctly connected, plot the layer graph.

```
lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
```


Load training and validation data, consisting of 28-by-28 grayscale images of digits.

```
[trainImages,trainLabels] = digitTrain4DArrayData;
[valImages,valLabels] = digitTest4DArrayData;
```

Specify training options and train the network. trainNetwork validates the network using the validation data every ValidationFrequency iterations.

```
options = trainingOptions('sgdm',...
    'MaxEpochs',6,...
    'Shuffle','every-epoch',...
    'ValidationData',{valImages,valLabels},...
    'ValidationFrequency',20,...
```

```
    'VerboseFrequency',20);
net = trainNetwork(trainImages,trainLabels,lgraph,options);
Training on single GPU.
Initializing image normalization.
```



```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 1 & 0.03 & 2.3210 & 2.2817 & 12.5 \\
\hline 1 & 20 & 0.86 & 1.0366 & 1.0026 & 70. \\
\hline 2 & 40 & 1.71 & 0.5824 & 0.4949 & 83. \\
\hline 2 & 60 & 2.57 & 0.2975 & 0.2972 & 94. \\
\hline 3 & 80 & 3.42 & 0.1402 & 0.2129 & 98. \\
\hline 3 & 100 & 4.33 & 0.1837 & 0.1562 & 95. \\
\hline 4 & 120 & 5.22 & 0.0948 & 0.1313 & 99. \\
\hline 4 & 140 & 6.11 & 0.0730 & 0.0835 & 99 \\
\hline 5 & 160 & 7.00 & 0.0502 & 0.0685 & 100. \\
\hline 5 & 180 & 7.92 & 0.0400 & 0.0531 & 100. \\
\hline 6 & 200 & 8.77 & 0.0348 & 0.0576 & 100. \\
\hline 6 & 220 & 9.66 & 0.0372 & 0.0417 & 100. \\
\hline 6 & 234 & 10.34 & 0.0358 & & 100. \\
\hline
\end{tabular}
```

The trained network is a DAGNetwork object.

```
net
```

net $=$

DAGNetwork with properties:

```
            Layers: [16\times1 nnet.cnn.layer.Layer]
        Connections: [16\times2 table]
```

Classify the validation images and calculate the accuracy.

```
predictedLabels = classify(net,valImages);
accuracy = mean(predictedLabels == valLabels)
```

accuracy =

Input Arguments

lgraph — Layer graph

LayerGraph object
Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.
larray — Network layers
Layer array
Network layers, specified as a Layer array.

Output Arguments

newlgraph - Output layer graph
LayerGraph object
Output layer graph, returned as a LayerGraph object.

```
See Also
connectLayers | disconnectLayers | layerGraph | plot | removeLayers
```


Topics

```
"Create and Train DAG Network for Deep Learning"
"Transfer Learning Using GoogLeNet"
Introduced in R2017b
```


removeLayers

Remove layers from layer graph

Syntax

```
newlgraph = removeLayers(lgraph,layerNames)
```


Description

newlgraph $=$ removeLayers(lgraph,layerNames) removes the layers specified by layerNames from the layer graph lgraph. Any connections to the removed layers are also removed.

Examples

Remove Layer from Layer Graph

Create a layer graph from an array of layers.

```
layers = [
    imageInputLayer([28 28 1],'Name','input')
    convolution2dLayer(3,16,'Padding','same','Name','conv 1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')];
lgraph = layerGraph(layers);
figure
plot(lgraph)
```


Remove the 'BN_1' layer and its connections.

```
lgraph = removeLayers(lgraph,'BN_1');
figure
plot(lgraph)
```


Input Arguments

lgraph — Layer graph
 LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

layerNames - Names of layers to remove

character vector | cell array

Names of layers to remove, specified as a character vector or a cell array of character vectors.

To remove a single layer from the layer graph, specify the name of the layer as a character vector.

To remove multiple layers, specify the layer names as a cell array of character vectors, where each element of the cell array is a layer name.

Example: 'conv1'

Example: \{'conv1','add1'\}

Output Arguments

newlgraph - Output layer graph

LayerGraph object
Output layer graph, returned as a LayerGraph object.

See Also

addLayers | connectLayers | disconnectLayers | layerGraph | plot

Topics

"Create and Train DAG Network for Deep Learning"
"Transfer Learning Using GoogLeNet"

Introduced in R2017b

connectLayers

Connect layers in layer graph

Syntax

```
newlgraph = connectLayers(lgraph,s,d)
```


Description

newlgraph = connectLayers(lgraph,s,d) connects the source layer s to the destination layer d in the layer graph lgraph. The new layer graph, newlgraph, contains the same layers as lgraph, but includes the new connection.

Examples

Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify images of digits. The simple network in this example consists of:

- A main branch with layers connected sequentially.
- A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable the parameter gradients to flow more easily from the output layer to the earlier layers of the network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs element-wise. Specify the number of inputs that the addition layer should sum. All layers must have names and all names must be unique.

```
layers = [
    imageInputLayer([28 28 1],'Name','input')
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
```

```
batchNormalizationLayer('Name','BN 1')
reluLayer('Name','relu 1')
convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
batchNormalizationLayer('Name','BN_2')
reluLayer('Name','relu_2')
convolution2dLayer(3,32,'Padding','same','Name','conv_3')
batchNormalizationLayer('Name','BN 3')
reluLayer('Name','relu_3')
additionLayer(2,'Name','add')
averagePooling2dLayer(2,'Stride',2,'Name','avpool')
fullyConnectedLayer(10,'Name','fc')
softmaxLayer('Name','softmax')
classificationLayer('Name','classOutput')];
```

Create a layer graph from the layer array. layerGraph connects all the layers in layers sequentially. Plot the layer graph.

```
lgraph = layerGraph(layers);
figure
plot(lgraph)
```


Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of convolutional filters and the stride so that the activation size matches the activation size of the 'relu_3' layer. This enables the addition layer to add the outputs of the 'skipConv' and 'relu_3' layers. To check that the layer has been added, plot the layer graph.

```
skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
```


Create the shortcut connection from the 'relu_1' to the 'add' layer. Because you specified the number of inputs to the addition layer to be two when you created the layer, the layer has two inputs with the names 'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the 'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the 'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To check that the layers are correctly connected, plot the layer graph.

```
lgraph = connectLayers(lgraph,'relu 1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
```


Load training and validation data, consisting of 28-by-28 grayscale images of digits.

```
[trainImages,trainLabels] = digitTrain4DArrayData;
[valImages,valLabels] = digitTest4DArrayData;
```

Specify training options and train the network. trainNetwork validates the network using the validation data every ValidationFrequency iterations.

```
options = trainingOptions('sgdm',...
    'MaxEpochs',6,...
    'Shuffle','every-epoch',...
    'ValidationData',{valImages,valLabels},...
    'ValidationFrequency',20,...
```

```
    'VerboseFrequency' , 20);
net = trainNetwork(trainImages,trainLabels,lgraph,options);
Training on single GPU.
Initializing image normalization.
```



```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 1 & 0.03 & 2.3210 & 2.2817 & 12.5 \\
\hline 1 & 20 & 0.86 & 1.0366 & 1.0026 & 70. \\
\hline 2 & 40 & 1.71 & 0.5824 & 0.4949 & 83. \\
\hline 2 & 60 & 2.57 & 0.2975 & 0.2972 & 94. \\
\hline 3 & 80 & 3.42 & 0.1402 & 0.2129 & 98. \\
\hline 3 & 100 & 4.33 & 0.1837 & 0.1562 & 95. \\
\hline 4 & 120 & 5.22 & 0.0948 & 0.1313 & 99. \\
\hline 4 & 140 & 6.11 & 0.0730 & 0.0835 & 99 \\
\hline 5 & 160 & 7.00 & 0.0502 & 0.0685 & 100. \\
\hline 5 & 180 & 7.92 & 0.0400 & 0.0531 & 100. \\
\hline 6 & 200 & 8.77 & 0.0348 & 0.0576 & 100. \\
\hline 6 & 220 & 9.66 & 0.0372 & 0.0417 & 100. \\
\hline 6 & 234 & 10.34 & 0.0358 & & 100. \\
\hline
\end{tabular}
```

The trained network is a DAGNetwork object.
net
net $=$

DAGNetwork with properties:

Layers: [16×1 nnet.cnn.layer.Layer] Connections: [16×2 table]

Classify the validation images and calculate the accuracy.

```
predictedLabels = classify(net,valImages);
```

accuracy $=$ mean(predictedLabels $==$ valLabels)
accuracy =

Input Arguments

lgraph — Layer graph

LayerGraph object
Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

s - Connection source

character vector
Connection source, specified as a character vector.

- If the source layer has a single output, then s is the name of the layer.
- If the source layer has multiple outputs, then s is the layer name, followed by the character " 1 ", followed by the name of the layer output. That is, s is on the form 'layerName/outputName'.

Example: ' conv1'
Example: 'mpool/indices'
d - Connection destination
character vector
Connection destination, specified as a character vector.

- If the destination layer has a single input, then d is the name of the layer.
- If the destination layer has multiple inputs, then d is the layer name, followed by the character " p ", followed by the name of the layer output. That is, d is on the form 'layerName/inputName'.

Example: 'fc'

Example: 'addlayer1/in2'

Output Arguments

newlgraph — Output layer graph

LayerGraph object
Output layer graph, returned as a LayerGraph object.

See Also

addLayers | disconnectLayers | layerGraph | plot | removeLayers

Topics

"Create and Train DAG Network for Deep Learning"
"Transfer Learning Using GoogLeNet"

Introduced in R2017b

disconnectLayers

Disconnect layers in layer graph

Syntax

```
newlgraph = disconnectLayers(lgraph,s,d)
```


Description

newlgraph $=$ disconnectLayers (lgraph,s,d) disconnects the source layer sfrom the destination layer d in the layer graph lgraph. The new layer graph, newlgraph, contains the same layers as lgraph, but excludes the connection between s and d .

Examples

Disconnect Layers in Layer Graph

Create a layer graph from an array of layers.

```
layers = [
    imageInputLayer([28 28 1],'Name','input')
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')];
lgraph = layerGraph(layers);
figure
plot(lgraph)
```


Disconnect the 'conv_1' layer from the 'BN_1' layer.
lgraph = disconnectLayers(lgraph,'conv_1','BN_1');
figure
plot(lgraph)

Input Arguments

lgraph — Layer graph

LayerGraph object
Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.
s-Connection source
character vector
Connection source, specified as a character vector.

- If the source layer has a single output, then s is the name of the layer.
- If the source layer has multiple outputs, then s is the layer name, followed by the character " p ", followed by the name of the layer output. That is, s is on the form 'layerName/outputName'.

Example: 'conv1'

Example: 'mpool/indices'

d - Connection destination

character vector
Connection destination, specified as a character vector.

- If the destination layer has a single input, then d is the name of the layer.
- If the destination layer has multiple inputs, then d is the layer name, followed by the character " "', followed by the name of the layer output. That is, d is on the form 'layerName/inputName'.

Example: 'fc'
Example: 'addlayer1/in2'

Output Arguments

newlgraph - Output layer graph
LayerGraph object
Output layer graph, returned as a LayerGraph object.

See Also

addLayers | connectLayers | layerGraph | plot | removeLayers

Topics

"Create and Train DAG Network for Deep Learning" "Transfer Learning Using GoogLeNet"

Introduced in R2017b

plot

Plot neural network layer graph

Syntax

```
plot(lgraph)
```

plot(dagNet)

Description

plot(lgraph) plots a diagram of the layer graph lgraph. plot labels each layer by its name and displays all layer connections.
plot (dagNet) plots a diagram of the layers in the DAG network dagNet.

Examples

Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify images of digits. The simple network in this example consists of:

- A main branch with layers connected sequentially.
- A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable the parameter gradients to flow more easily from the output layer to the earlier layers of the network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs element-wise. Specify the number of inputs that the addition layer should sum. All layers must have names and all names must be unique.

```
layers = [
    imageInputLayer([28 28 1],'Name','input')
```

```
convolution2dLayer(5,16,'Padding','same','Name','conv_1')
batchNormalizationLayer('Name','BN_1')
reluLayer('Name','relu_1')
convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
batchNormalizationLayer('Name','BN_2')
reluLayer('Name','relu_2')
convolution2dLayer(3,32,'Padding','same','Name','conv_3')
batchNormalizationLayer('Name','BN_3')
reluLayer('Name','relu_3')
additionLayer(2,'Name','add')
averagePooling2dLayer(2,'Stride',2,'Name','avpool')
fullyConnectedLayer(10,'Name','fc')
softmaxLayer('Name','softmax')
classificationLayer('Name','classOutput')];
```

Create a layer graph from the layer array. layerGraph connects all the layers in layers sequentially. Plot the layer graph.

```
lgraph = layerGraph(layers);
figure
plot(lgraph)
```


Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of convolutional filters and the stride so that the activation size matches the activation size of the 'relu_3' layer. This enables the addition layer to add the outputs of the 'skipConv' and 'relu_3' layers. To check that the layer has been added, plot the layer graph.

```
skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
```


Create the shortcut connection from the 'relu_1' to the 'add' layer. Because you specified the number of inputs to the addition layer to be two when you created the layer, the layer has two inputs with the names 'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the 'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the 'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To check that the layers are correctly connected, plot the layer graph.

```
lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
```


Load training and validation data, consisting of 28-by-28 grayscale images of digits.

```
[trainImages,trainLabels] = digitTrain4DArrayData;
[valImages,valLabels] = digitTest4DArrayData;
```

Specify training options and train the network. trainNetwork validates the network using the validation data every ValidationFrequency iterations.

```
options = trainingOptions('sgdm',...
    'MaxEpochs',6,...
    'Shuffle','every-epoch',...
    'ValidationData',{valImages,valLabels},...
    'ValidationFrequency',20,...
```

```
    'VerboseFrequency',20);
net = trainNetwork(trainImages,trainLabels,lgraph,options);
Training on single GPU.
Initializing image normalization.
```



```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 1 & 0.03 & 2.3210 & 2.2817 & 12.5 \\
\hline 1 & 20 & 0.86 & 1.0366 & 1.0026 & 70. \\
\hline 2 & 40 & 1.71 & 0.5824 & 0.4949 & 83. \\
\hline 2 & 60 & 2.57 & 0.2975 & 0.2972 & 94. \\
\hline 3 & 80 & 3.42 & 0.1402 & 0.2129 & 98. \\
\hline 3 & 100 & 4.33 & 0.1837 & 0.1562 & 95. \\
\hline 4 & 120 & 5.22 & 0.0948 & 0.1313 & 99. \\
\hline 4 & 140 & 6.11 & 0.0730 & 0.0835 & 99 \\
\hline 5 & 160 & 7.00 & 0.0502 & 0.0685 & 100. \\
\hline 5 & 180 & 7.92 & 0.0400 & 0.0531 & 100. \\
\hline 6 & 200 & 8.77 & 0.0348 & 0.0576 & 100. \\
\hline 6 & 220 & 9.66 & 0.0372 & 0.0417 & 100. \\
\hline 6 & 234 & 10.34 & 0.0358 & & 100. \\
\hline
\end{tabular}
```

The trained network is a DAGNetwork object.

```
net
```

net $=$

DAGNetwork with properties:

```
            Layers: [16\times1 nnet.cnn.layer.Layer]
        Connections: [16\times2 table]
```

Classify the validation images and calculate the accuracy.

```
predictedLabels = classify(net,valImages);
accuracy = mean(predictedLabels == valLabels)
```

accuracy $=$

0.9954

Input Arguments

lgraph — Layer graph

LayerGraph object
Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.
dagNet - DAG network
DAGNetwork object
DAG network, specified as a DAGNetwork object.

See Also

addLayers | connectLayers | disconnectLayers | layerGraph | removeLayers

Topics

"Create and Train DAG Network for Deep Learning"
"Transfer Learning Using GoogLeNet"

Introduced in R2017b

LayerGraph

Graph of network layers for deep learning

Description

A layer graph describes the architecture of a directed acyclic graph (DAG) network for deep learning. After you create a LayerGraph object, you can use object functions to add layers to a graph, connect and disconnect layers in a graph, remove layers from a graph, and plot the graph. To train the network, use the layer graph as the layers on page 10 input argument to trainNetwork.

Creation

Syntax

```
lgraph = layerGraph
lgraph = layerGraph(larray)
lgraph = layerGraph(dagNet)
```


Description

lgraph $=$ layerGraph creates an empty layer graph.
lgraph $=$ layerGraph (larray) creates a layer graph from the array of network layers larray. The layers in lgraph are connected one after the other, in the same order as in larray. All layers must have unique nonempty names.
lgraph = layerGraph (dagNet) extracts the layer graph of the DAG network dagNet. For example, you can extract the layer graph of a pretrained network to perform transfer learning.

Input Arguments

larray — Network layers

Layer array
Network layers, specified as a Layer array.
dagNet - DAG network
DAGNetwork object
DAG network, specified as a DAGNetwork object.

Properties

Layers — Network layers
Layer array
Network layers, specified as a Layer array.
Connections - Layer connections
table
Layer connections, specified as a table with two columns.
Each table row represents a connection in the layer graph. The first column, Source, specifies the source of each connection. The second column, Destination, specifies the destination of each connection. The connection sources and destinations are either layer names, or have the form 'layerName/IOName', where 'IOName' is the name of the input or output of the layer.

Data Types: table

Object Functions

addLayers Add layers to layer graph
removeLayers Remove layers from layer graph
connectLayers Connect layers in layer graph
disconnectLayers Disconnect layers in layer graph
plot Plot neural network layer graph

Examples

Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify images of digits. The simple network in this example consists of:

- A main branch with layers connected sequentially.
- A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable the parameter gradients to flow more easily from the output layer to the earlier layers of the network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs element-wise. Specify the number of inputs that the addition layer should sum. All layers must have names and all names must be unique.

```
layers = [
    imageInputLayer([28 28 1],'Name','input')
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN 2')
    reluLayer('Name','relu 2')
    convolution2dLayer(3,32,'Padding','same','Name','conv 3')
    batchNormalizationLayer('Name','BN 3')
    reluLayer('Name','relu_3')
    additionLayer(2,'Name','add')
    averagePooling2dLayer(2,'Stride',2,'Name','avpool')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classOutput')];
```

Create a layer graph from the layer array. layerGraph connects all the layers in layers sequentially. Plot the layer graph.

```
lgraph = layerGraph(layers);
figure
plot(lgraph)
```


Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of convolutional filters and the stride so that the activation size matches the activation size of the 'relu_3' layer. This enables the addition layer to add the outputs of the 'skipConv' and 'relu_3' layers. To check that the layer has been added, plot the layer graph.

```
skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
```


Create the shortcut connection from the 'relu_1' to the 'add' layer. Because you specified the number of inputs to the addition layer to be two when you created the layer, the layer has two inputs with the names 'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the 'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the 'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To check that the layers are correctly connected, plot the layer graph.

```
lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
```


Load training and validation data, consisting of 28-by-28 grayscale images of digits.

```
[trainImages,trainLabels] = digitTrain4DArrayData;
[valImages,valLabels] = digitTest4DArrayData;
```

Specify training options and train the network. trainNetwork validates the network using the validation data every ValidationFrequency iterations.

```
options = trainingOptions('sgdm',...
    'MaxEpochs',6,...
    'Shuffle','every-epoch',...
    'ValidationData',{valImages,valLabels},...
    'ValidationFrequency',20,...
```

```
    'VerboseFrequency',20);
net = trainNetwork(trainImages,trainLabels,lgraph,options);
Training on single GPU.
Initializing image normalization.
```



```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 1 & 0.03 & 2.3210 & 2.2817 & 12.5 \\
\hline 1 & 20 & 0.86 & 1.0366 & 1.0026 & 70. \\
\hline 2 & 40 & 1.71 & 0.5824 & 0.4949 & 83. \\
\hline 2 & 60 & 2.57 & 0.2975 & 0.2972 & 94. \\
\hline 3 & 80 & 3.42 & 0.1402 & 0.2129 & 98. \\
\hline 3 & 100 & 4.33 & 0.1837 & 0.1562 & 95. \\
\hline 4 & 120 & 5.22 & 0.0948 & 0.1313 & 99. \\
\hline 4 & 140 & 6.11 & 0.0730 & 0.0835 & 99 \\
\hline 5 & 160 & 7.00 & 0.0502 & 0.0685 & 100. \\
\hline 5 & 180 & 7.92 & 0.0400 & 0.0531 & 100. \\
\hline 6 & 200 & 8.77 & 0.0348 & 0.0576 & 100. \\
\hline 6 & 220 & 9.66 & 0.0372 & 0.0417 & 100. \\
\hline 6 & 234 & 10.34 & 0.0358 & & 100. \\
\hline
\end{tabular}
```

The trained network is a DAGNetwork object.
net
net $=$

DAGNetwork with properties:

```
            Layers: [16\times1 nnet.cnn.layer.Layer]
        Connections: [16\times2 table]
```

Classify the validation images and calculate the accuracy.

```
predictedLabels = classify(net,valImages);
accuracy = mean(predictedLabels == valLabels)
```

```
accuracy =
```


0.9954

- "Create Simple Deep Learning Network for Classification"

Tips

- Layer graphs cannot describe the architecture of long short-term memory (LSTM) networks. For more information on how to create an LSTM network, see "Long ShortTerm Memory Networks".

See Also

DAGNetwork | addLayers | additionLayer | connectLayers | depthConcatenationLayer | disconnectLayers | googlenet | plot | removeLayers | trainNetwork

Topics

"Create Simple Deep Learning Network for Classification"
"Deep Learning in MATLAB"
"Pretrained Convolutional Neural Networks"
"Create and Train DAG Network for Deep Learning"
"Transfer Learning Using GoogLeNet"

Introduced in R2017b

DAGNetwork

Directed acyclic graph (DAG) network for deep learning

Description

A DAG network is a neural network for deep learning that can have its layers arranged as a directed acyclic graph. DAG networks can have a more complex architecture where layers can have inputs from, or outputs to, multiple layers. A DAGNetwork object has a single input layer and a single output layer.

Creation

Train a DAG network using the trainNetwork function or load a pretrained network using googlenet.

Properties

Layers - Network layers

Layer array
Network layers, specified as a Layer array.
Connections - Layer connections
table
Layer connections, specified as a table with two columns.
Each table row represents a connection in the layer graph. The first column, Source, specifies the source of each connection. The second column, Destination, specifies the destination of each connection. The connection sources and destinations are either layer names, or have the form 'layerName/IOName', where 'IOName' is the name of the input or output of the layer.

Data Types: table

Object Functions

classify Classify data using a trained deep learning neural network predict Predict responses using a trained deep learning neural network plot Plot neural network layer graph

Examples

Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify images of digits. The simple network in this example consists of:

- A main branch with layers connected sequentially.
- A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable the parameter gradients to flow more easily from the output layer to the earlier layers of the network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs element-wise. Specify the number of inputs that the addition layer should sum. All layers must have names and all names must be unique.

```
layers = [
    imageInputLayer([28 28 1],'Name','input')
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN_2')
    reluLayer('Name','relu_2')
    convolution2dLayer(3,32,'Padding','same','Name','conv_3')
    batchNormalizationLayer('Name','BN_3')
    reluLayer('Name','relu_3')
    additionLayer(2,'Name','add')
    averagePooling2dLayer(2,'Stride',2,'Name','avpool')
    fullyConnectedLayer(10,'Name','fc')
```

```
softmaxLayer('Name','softmax')
classificationLayer('Name','classOutput')];
```

Create a layer graph from the layer array. layerGraph connects all the layers in layers sequentially. Plot the layer graph.

```
lgraph = layerGraph(layers);
figure
plot(lgraph)
```


Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of convolutional filters and the stride so that the activation size matches the activation size of the 'relu_3' layer. This enables the addition layer to add the outputs of the
'skipConv' and 'relu_3' layers. To check that the layer has been added, plot the layer graph.

```
skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
```


Create the shortcut connection from the 'relu_1' to the 'add' layer. Because you specified the number of inputs to the addition layer to be two when you created the layer, the layer has two inputs with the names 'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the 'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the 'add' layer. The addition
layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To check that the layers are correctly connected, plot the layer graph.

```
lgraph = connectLayers(lgraph,'relu 1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
```


Load training and validation data, consisting of 28-by-28 grayscale images of digits.

```
[trainImages,trainLabels] = digitTrain4DArrayData;
[valImages,valLabels] = digitTest4DArrayData;
```

Specify training options and train the network. trainNetwork validates the network using the validation data every ValidationFrequency iterations.

```
options = trainingOptions('sgdm',...
    'MaxEpochs',6,...
    'Shuffle','every-epoch',...
    'ValidationData',{valImages,valLabels},...
    'ValidationFrequency',20,...
    'VerboseFrequency',20);
net = trainNetwork(trainImages,trainLabels,lgraph,options);
Training on single GPU.
Initializing image normalization.
|================================================================================================= \ I Iteration | Time Elapsed | Mini-batch | Validation | Mini-batc
```


The trained network is a DAGNetwork object.
net
net $=$

DAGNetwork with properties:

```
            Layers: [16\times1 nnet.cnn.layer.Layer]
        Connections: [16\times2 table]
```

Classify the validation images and calculate the accuracy.

```
predictedLabels = classify(net,valImages);
accuracy = mean(predictedLabels == valLabels)
```

accuracy =
0.9954

- "Create Simple Deep Learning Network for Classification"

```
See Also
SeriesNetwork | classify | googlenet | layerGraph | plot | predict |
trainNetwork | trainingOptions
```


Topics

"Create Simple Deep Learning Network for Classification"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"
"Set Up Parameters and Train Convolutional Neural Network"
"Create and Train DAG Network for Deep Learning"
"Transfer Learning Using GoogLeNet"

Introduced in R2017b

AdditionLayer

Addition layer

Description

An addition layer adds multiple inputs element-wise. Specify the number of inputs to the layer when you create it. The inputs have names 'in1','in2',...,'inN', where N is the number of inputs. Use the input names when connecting or disconnecting the layer to other layers using connectLayers or disconnectLayers. All inputs to an addition layer must have the same dimension.

Creation

Syntax

```
layer = additionLayer(numInputs)
layer = additionLayer(numInputs,'Name',Name)
```


Description

layer = additionLayer(numInputs) creates an addition layer with number of inputs equal to numInputs.
layer = additionLayer(numInputs,'Name',Name) additionally specifies the layer name. To create a network containing an addition layer you must specify a layer name.

Properties

Name - Layer name

' ' (default) | character vector
Layer name, specified as a character vector.

Data Types: char

NumInputs - Number of inputs

positive integer
Number of inputs to the layer, specified as a positive integer.
The inputs have names 'in1', 'in2', ...,'inN', where N equals NumInputs. For example, if NumInputs equals 3, then the inputs have names 'in1', 'in2', and 'in3'. Use the input names when connecting or disconnecting the layer to other layers using connectLayers or disconnectLayers.

Examples

Create Addition Layer

Create an addition layer with two inputs and the name 'add_1'.

```
    add = additionLayer(2,'Name','add_1')
add =
    AdditionLayer with properties:
            Name: 'add_1'
        NumInputs: 2
```

Create two ReLU layers and connect them to the addition layer. The addition layer sums the outputs from the ReLU layers.

```
relu_1 = reluLayer('Name','relu_1');
relu_2 = reluLayer('Name','relu_2');
lgraph = layerGraph;
lgraph = addLayers(lgraph,relu_1);
lgraph = addLayers(lgraph,relu_2);
lgraph = addLayers(lgraph,add);
lgraph = connectLayers(lgraph,'relu_1','add_1/in1');
lgraph = connectLayers(lgraph,'relu_2','add_1/in2');
```


Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify images of digits. The simple network in this example consists of:

- A main branch with layers connected sequentially.
- A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable the parameter gradients to flow more easily from the output layer to the earlier layers of the network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs element-wise. Specify the number of inputs that the addition layer should sum. All layers must have names and all names must be unique.

```
layers = [
    imageInputLayer([28 28 1],'Name','input')
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN_2')
    reluLayer('Name','relu_2')
    convolution2dLayer(3,32,'Padding','same','Name','conv_3')
    batchNormalizationLayer('Name','BN_3')
    reluLayer('Name','relu_3')
    additionLayer(2,'Name','add')
    averagePooling2dLayer(2,'Stride',2,'Name','avpool')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classOutput')];
```

Create a layer graph from the layer array. layerGraph connects all the layers in layers sequentially. Plot the layer graph.

```
lgraph = layerGraph(layers);
figure
plot(lgraph)
```


Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of convolutional filters and the stride so that the activation size matches the activation size of the 'relu_3' layer. This enables the addition layer to add the outputs of the 'skipConv' and 'relu_3' layers. To check that the layer has been added, plot the layer graph.

```
skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
```


Create the shortcut connection from the 'relu_1' to the 'add' layer. Because you specified the number of inputs to the addition layer to be two when you created the layer, the layer has two inputs with the names 'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the 'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the 'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To check that the layers are correctly connected, plot the layer graph.

```
lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
```


Load training and validation data, consisting of 28-by-28 grayscale images of digits.

```
[trainImages,trainLabels] = digitTrain4DArrayData;
[valImages,valLabels] = digitTest4DArrayData;
```

Specify training options and train the network. trainNetwork validates the network using the validation data every ValidationFrequency iterations.

```
options = trainingOptions('sgdm',...
    'MaxEpochs',6,...
    'Shuffle','every-epoch',...
    'ValidationData',{valImages,valLabels},...
    'ValidationFrequency',20,...
```

```
    'VerboseFrequency',20);
net = trainNetwork(trainImages,trainLabels,lgraph,options);
Training on single GPU.
Initializing image normalization.
```



```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 1 & 0.03 & 2.3210 & 2.2817 & 12.5 \\
\hline 1 & 20 & 0.86 & 1.0366 & 1.0026 & 70. \\
\hline 2 & 40 & 1.71 & 0.5824 & 0.4949 & 83. \\
\hline 2 & 60 & 2.57 & 0.2975 & 0.2972 & 94. \\
\hline 3 & 80 & 3.42 & 0.1402 & 0.2129 & 98. \\
\hline 3 & 100 & 4.33 & 0.1837 & 0.1562 & 95. \\
\hline 4 & 120 & 5.22 & 0.0948 & 0.1313 & 99. \\
\hline 4 & 140 & 6.11 & 0.0730 & 0.0835 & 99 \\
\hline 5 & 160 & 7.00 & 0.0502 & 0.0685 & 100. \\
\hline 5 & 180 & 7.92 & 0.0400 & 0.0531 & 100. \\
\hline 6 & 200 & 8.77 & 0.0348 & 0.0576 & 100. \\
\hline 6 & 220 & 9.66 & 0.0372 & 0.0417 & 100. \\
\hline 6 & 234 & 10.34 & 0.0358 & & 100. \\
\hline
\end{tabular}
```

The trained network is a DAGNetwork object.

```
net
```

net $=$

DAGNetwork with properties:

```
            Layers: [16\times1 nnet.cnn.layer.Layer]
        Connections: [16\times2 table]
```

Classify the validation images and calculate the accuracy.

```
predictedLabels = classify(net,valImages);
accuracy = mean(predictedLabels == valLabels)
```

accuracy $=$

- "Create Simple Deep Learning Network for Classification"

See Also
depthConcatenationLayer | layerGraph | trainNetwork

Topics

"Create Simple Deep Learning Network for Classification"
"Deep Learning in MATLAB"
"Pretrained Convolutional Neural Networks"
"Set Up Parameters and Train Convolutional Neural Network"
"Specify Layers of Convolutional Neural Network"
"Create and Train DAG Network for Deep Learning"

Introduced in R2017b

DepthConcatenationLayer

Depth concatenation layer

Description

A depth concatenation layer takes multiple inputs that have the same height and width and concatenates them along the third dimension (the channel dimension). The inputs have names 'in1','in2',...,'inN', where N is the number of inputs. Use the input names when connecting or disconnecting the layer to other layers using connectLayers or disconnectLayers.

Creation

Syntax

layer $=$ depthConcatenationLayer(numInputs)
layer $=$ depthConcatenationLayer(numInputs,'Name', Name)

Description

layer = depthConcatenationLayer(numInputs) creates a depth concatenation layer that concatenates numInputs inputs along the third (channel) dimension.
layer = depthConcatenationLayer(numInputs,'Name',Name) additionally specifies the layer name. To create a network containing a depth concatenation layer you must specify a layer name.

Properties

Name - Layer name
' ' (default) | character vector

Layer name, specified as a character vector.

Data Types: char

NumInputs - Number of inputs

positive integer

Number of inputs to the layer, specified as a positive integer.
The inputs have names 'in1','in2',...,'inN', where N equals NumInputs. For example, if NumInputs equals 3, then the inputs have names 'in1','in2', and 'in3'. Use the input names when connecting or disconnecting the layer to other layers using connectLayers or disconnectLayers.

Examples

Create Depth Concatenation Layer

Create a depth concatenation layer with two inputs and the name 'concat_1'.

```
layer = depthConcatenationLayer(2,'Name','concat_1')
layer =
    DepthConcatenationLayer with properties:
        Name: 'concat_1'
        NumInputs: 2
```

- "Create Simple Deep Learning Network for Classification"

```
See Also
additionLayer | connectLayers | disconnectLayers | layerGraph |
trainNetwork
```


Topics

"Create Simple Deep Learning Network for Classification"

"Deep Learning in MATLAB"
"Pretrained Convolutional Neural Networks"
"Set Up Parameters and Train Convolutional Neural Network"
"Specify Layers of Convolutional Neural Network"
"Create and Train DAG Network for Deep Learning"
Introduced in R2017b

googlenet

Pretrained GoogLeNet convolutional neural network

Syntax

```
net = googlenet
```


Description

net $=$ googlenet returns a pretrained GoogLeNet model. This model is trained on a subset of the ImageNet database [1], which is used in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). The model is trained on more than a million images and can classify images into 1000 object categories. For example, keyboard, mouse, pencil, and many animals. As a result, the model has learned rich feature representations for a wide range of images.

This function requires the Neural Network Toolbox Model for GoogLeNet Network support package. If this support package is not installed, then the function provides a download link.

Examples

Download GoogLeNet Support Package

Download and install the Neural Network Toolbox Model for GoogLeNet Network support package.

Type googlenet at the command line.
googlenet
If the Neural Network Toolbox Model for GoogLeNet Network support package is not installed, then the function provides a link to the required support package in the AddOn Explorer. To install the support package, click the link, and then click Install. Check
that the installation is successful by typing googlenet at the command line. If the required support package is installed, then the function returns a DAGNetwork object.

```
googlenet
ans =
    DAGNetwork with properties:
    Layers: [144\times1 nnet.cnn.layer.Layer]
    Connections: [170\times2 table]
```


Transfer Learning Using GoogLeNet

This example shows how to use transfer learning to retrain GoogLeNet, a pretrained convolutional neural network, to classify a new set of images.

Unzip and load the new images as an image datastore. The size of the images is 227-by- 227 pixels, but GoogLeNet expects images of size 224 -by- 224 pixels. Assign a read function to the image datastore that automatically resizes the images. Divide the data into training and validation data sets. Use 70% of the images for training and 30% for validation.

```
unzip('MerchData.zip');
images = imageDatastore('MerchData','IncludeSubfolders',true,'LabelSource','foldernames
images.ReadFcn = @(loc)imresize(imread(loc),[224,224]);
[trainImages,valImages] = splitEachLabel(images,0.7,'randomized');
```

Load the pretrained GoogLeNet network. If the Neural Network Toolbox ${ }^{\text {TM }}$ Model for GoogLeNet Network is not installed, then the software provides a download link. GoogLeNet is trained on more than one million images and can classify images into 1000 object categories.

```
net = googlenet;
```

Extract the layer graph from the trained network and plot the layer graph.

```
lgraph = layerGraph(net);
figure('Units','normalized','Position',[0.1 0.1 0.8 0.8]);
plot(lgraph)
```


To retrain GoogLeNet to classify new images, replace the last three layers of the network. These three layers of the network, with the names 'loss3-classifier', 'prob', and 'output', contain the information of how to combine the features that the network extracts into class probabilities and labels. Add three new layers, a fully connected layer, a softmax layer, and a classification output layer, to the layer graph. Set the final fully connected layer to have the same size as the number of classes in the new data set (5 , in this example). To learn faster in the new layers than in the transferred layers, increase the learning rate factors of the fully connected layer.

```
lgraph = removeLayers(lgraph, {'loss3-classifier','prob','output'});
numClasses = numel(categories(trainImages.Labels));
newLayers = [
    fullyConnectedLayer(numClasses,'Name','fc','WeightLearnRateFactor',20,'BiasLearnRat
    softmaxLayer('Name','softmax')
```

```
    classificationLayer('Name','classoutput')];
lgraph = addLayers(lgraph,newLayers);
```

Connect the last of the transferred layers remaining in the network ('pool5drop_7x7_s1') to the new layers. To check that the new layers are correctly connected, plot the new layer graph and zoom in on the last layers of the network.

```
lgraph = connectLayers(lgraph,'pool5-drop_7x7_s1','fc');
figure('Units','normalized','Position',[0.3 0.3 0.4 0.4]);
plot(lgraph)
ylim([0,10])
```


Specify the training options, including learning rate, mini-batch size, and validation data.

```
options = trainingOptions('sgdm',...
    'MiniBatchSize',10,...
    'MaxEpochs',3,...
    'InitialLearnRate',1e-4,...
    'VerboseFrequency',1,...
    'ValidationData',valImages,...
    'ValidationFrequency',3);
```

Train the network using the training data.

```
net = trainNetwork(trainImages,lgraph,options);
Training on single GPU.
Initializing image normalization.
```


Classify the validation images using the fine-tuned network, and calculate the classification accuracy.

```
predictedLabels = classify(net,valImages);
accuracy = mean(predictedLabels == valImages.Labels)
accuracy =
```

- "Deep Learning in MATLAB"
- "Pretrained Convolutional Neural Networks"
- "Transfer Learning Using AlexNet"
- "Create and Train DAG Network for Deep Learning"

Output Arguments

net - Pretrained GoogLeNet convolutional neural network

DAGNetwork object
Pretrained GoogLeNet convolutional neural network, returned as a DAGNetwork object.

References

[1] ImageNet. http://www.image-net.org
[2] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9. 2015.
[3] BVLC GoogLeNet Model. https://github.com/BVLC/caffe/tree/master/models/ bvlc_googlenet

See Also

DAGNetwork | alexnet | importCaffeLayers | importCaffeNetwork |
layerGraph | plot | trainNetwork | vgg16 | vgg19

Topics

"Deep Learning in MATLAB"
"Pretrained Convolutional Neural Networks"
"Transfer Learning Using AlexNet"
"Create and Train DAG Network for Deep Learning"

Introduced in R2017b

[^0]: net.userdata

[^1]: plotwb (net,'fromLayers',1)

[^2]: plotwb (net,'toLayers',2,'fromInputs',1)

[^3]: 1 (default) | nonnegative scalar

